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Fusing Complete Monotonic Decision Trees

Hang Xu, Wenjian Wang, and Yuhua Qian, Member, IEEE

Abstract—Monotonic classification is a kind of classification task in which a monotonicity constraint exist between features and class,
i.e., if sample x; has a higher value in each feature than sample z;, it should be assigned to a class with a higher level than the level of
z,’s class. Several methods have been proposed, but they have some limits such as with limited kind of data or limited classification
accuracy. In our former work, the classification accuracy on monotonic classification has been improved by fusing monotonic decision
trees, but it always has a complex classification model. This work aims to find a monotonic classifier to process both nominal and
numeric data by fusing complete monotonic decision trees. Through finding the completed feature subsets based on discernibility
matrix on ordinal dataset, a set of monotonic decision trees can be obtained directly and automatically, on which the rank is still
preserved. Fewer decision trees are needed, which will serve as base classifiers to construct a decision forest fused complete
monotonic decision trees. The experiment results on 10 datasets demonstrate that the proposed method can reduce the number of
base classifiers effectively and then simplify classification model, and obtain good classification performance simultaneously.

Index Terms—NMonotonic classification, decision tree, ensemble learning, feature selection, discernibility matrix

1 INTRODUCTION

LASSIFICATION is one of important research issues in

machine learning and data mining. From the viewpoint
of constraints among feature values, classification tasks can
be regarded as two types: nominal classification and ordinal
classification. For an ordinal classification task, the ordinal
relationship between different class labels should be taken
into account [1], [2]. Monotonic classification is a special
ordinal classification task, where the class values are ordinal
and discrete, and there is a monotonicity constraint between
features and class[3]. The monotonicity constraint indicates
that if sample z; has a higher value in each feature than
sample x;, it should be assigned to a class with a higher
level than the level of z;’s class [4]. Monotonic classification
is a common task, which has attracted increasing attention
from domains of data mining, knowledge discovery, pattern
recognition, intelligent decision making, and so on.

There are many monotonic classification tasks in real-life.
For example, evaluating a university’s comprehensive ability
is such a problem. In this problem, scientific research ability,
teacher quality and teaching level are three important indica-
tors, and in the scores of these indicators an ordinal relation
exists obviously. The evaluation of university’s comprehen-
sive ability has three levels—"high, medium, low”, among
which an ordinal relation exists. There is a monotonicity
constraint between the features (scientific research ability,
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teacher quality and teaching level) and class (the evaluation
level of university’s comprehensive ability) as follows: If a
university A has a higher scores in these three features than
another university B, university A will have a higher level
in the evaluation level than university B. In addition, there
are many problems with the same characteristics as follows:
consumers select commodities in a market according to their
price and quality; employers select their employees based on
their education and experience; investors select stocks or
bonds in terms of their probability of appreciation or risk;
universities select scholarship students according to students
performances; editors make a decision on a manuscript
according to its quality; and so on. This kind of problem is
monotonic classification.

Typical classification methods, neural networks, support
vector machine, decision tree, etc., are not fit for solving
monotonic classification problems because they do not con-
sider the monotonicity constraint between features and class
[4]. Therefore, special methods for monotonic classification
task need to be designed [1], [2]. Monotonic classification
problems are widespread in real-life world, but compared
with general classification problems, much less attention has
been paid to monotonic classification these years. At present,
some effective results for monotonic classification have been
reported, and they can be roughly classified into two kinds
of methods: First, some theoretic frameworks for monotonic
classification have been developed, such as rule-based classi-
fiers [5], [6], [7], [8], [9], [10], set-valued and interval ordered
information systems [11], [12] and ordered entropy model
[13]. These methods always got few consistent rules because
they produced much larger classification boundary on prac-
tical works [14]. Second, some algorithms for learning mono-
tonic decision model were designed [15], [16], [17], [18], like
ordinal learning model[19], modified nearest neighbor algo-
rithm [18], ranking impurity [20] and ordinal decision trees
[21], [22], [23], [24], [25]. They can improve the performance
of extracting ordinal information, but they can not ensure the
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monotonicity of a decision tree learned from a training data-
set with a monotonicity constraint. These two kinds of meth-
ods were reviewed and analyzed in [26] in detail.

Ref. [4] presented a rank entropy based monotonic deci-
sion tree (REMT) algorithm to reduce the influence of noisy
data and obtain decision rules with clear semantics, which
can get a monotonic decision tree if training samples are
from a monotonic dataset. Although REMT is robust and
understandable, its generalization ability is limited. Ref.
[26] proposed a fusing monotonic decision trees (FREMT)
algorithm which combined decision trees with ensemble
learning technique. The method had obvious effect on
improving the classification performance. However, it may
not obtain complete feature subsets (the complete feature
subsets mean all the feature subsets of original feature set
under a given condition) under one variable precision
parameter value due to its adopted heuristic search strat-
egy, which results in a series of variable precision parameter
values to construct base decision trees are needed. The per-
formance of FREMT has a large fluctuation along the varia-
tion of variable precision parameter values and no single
one can make the classification performance good enough.
This is because the parameter is introduced into the defini-
tion of classes” lower and upper approximation sets under
the rough set frame, and the “belong to under a strict sense”
in computing lower and upper approximations will relax to
the “belong to under the sense of a precision”. When the
variable precision parameter value is zero, the upper and
lower approximations become strict, which will lead to
fewer samples in lower approximation set and more sam-
ples in upper approximation set. Then the union set of all
classes’” boundary domain always approaches the whole
dataset, which may result in an almost zero significance on
most features. Like this, the variable precision value can
affect the number of samples in upper and lower approxi-
mation set, and further the value of feature significance. So
if FREMT only runs under one variable precision value, the
number of feature subsets may be too few to get a good clas-
sification model. The FREMT usually obtains a large num-
ber of base classifiers in multiple variable precision values
in order to get a higher accuracy, which results in compli-
cated classification model. So for monotonic classification
problem, it is needed to build a simplified classification
model with good classification performance through learn-
ing from a set of samples with class labels. Therefore, it is
significant to obtain a comparable or even better classifica-
tion performance with fewer base classifiers.

To address this issue, it is necessary that complete feature
subsets should be achieved only under one variable preci-
sion parameter value. It has four reasons: (1) The complete-
ness of feature subsets is helpful to improve the classification
accuracy of monotonic classification. (2) Because the existing
methods can not get enough feature subsets on one variable
precision parameter value, more feature subsets need to be
found under various variable precision parameter values,
which may lead to redundancy of feature subsets. (3) Too
many feature subsets obtained by the existing methods make
their running take up more storage space and spend more
computational cost. (4) The redundant feature subsets may
lead to the over-fitting of an algorithm and the weakening
generalization ability. Besides heuristic search strategy, the
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discernibility matrix method can also be used to obtain fea-
ture subsets [27], [28], [29], [30]. But the existing feature selec-
tion algorithms based on discernibility matrixes can only be
used in general data and not consider the ordinal relations.
In this work, we define a discernibility matrix on ordinal
dataset and then obtained complete feature subsets. Then we
propose a method of fusing complete monotonic decision
trees, namely FCMT, which omits the process of selecting
decision trees and determining the number of decision trees.
A set of monotonic decision trees can be obtained directly
and automatically, and they will serve as base decision trees
to construct a decision forest. Although it includes fewer
number of trees, rank is still preserved which can ensure
monotonically consistent rules. The FCMT method can
reduce the number of base classifiers effectively and then
simplify classification model, and obtain good classification
performance simultaneously.

The rest of the paper is organized as follows. In Section 2,
the preliminaries on discernibility matrix and monotonic
decision tree are introduced. In Section 3, we explain how to
construct discernibility matrix and the FCMT method in
detail. Experimental results and analysis are presented in
Section 4. Finally, we give some conclusions about this
paper in Section 5.

2 PRELIMINARIES

To illustrate the proposed method clearly, some basic con-
cepts, such as dependency and feature selection on a ordinal
dataset, discernibility matrix, discernibility function and
REMT algorithm, are introduced briefly in this section.

2.1 Feature Selection on Ordinal Dataset

Let U = {z1,...,z,} be a set of samples and C be a set of
features to describe the samples; d is a class. For the features
and class, if there is a superior sequence relationship bet-
ween the values of samples, the dataset OD = {U,C U {d}}
will be an ordinal dataset.

Definition 1. [31] Given an ordinal dataset OD = {U,C U {d}},
B C C, therangeof dis {dy,dy, ..., d;}, wheredy < dy < --- <
dy (dy < dy means dy is dominated by ds), the dominance rela-
tions on discourse domain U are as follows:

REZ{(Iiyl‘j)EUXU|f(.T7;,C)Zf(l’j,C),VCEB} (1)
Réz{(xl’xj) EUXUU.(xiaC) Sf(l‘ﬁC),VCGB} (2)

Ry, = {(wi,2;) € U x Ul f(xi,d) < f(zj,d)} (4)

where f(x;,c) is the value of x; in feature c(c € B), and
f(xi,d) is the value of x; in class d.

Definition 2. [4] Let OD = {U, C U {d}} be an ordinal dataset,
BCC. If V(:E“l‘]) el, (.Z‘VL',.T}]') S Rl% = (.73‘1'71']') S R{Zd}, we
say OD is B-monotonically consistent.

When the ordinal dataset satisfies the monotonically con-

sistency between its feature set and class, it is a monotonic
classification.
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Denote the set which dominates x and the set dominated
by « as follows:

[2]5 = {y € Ulf(y.c) > f(x,¢),Vc € B} (5)

[l = {y € Ulf(y,¢) <

The lower approximation and upper approximation of
the set which dominates d; are defined as follows:

f(z,¢),Ve € B} (6)

Definition 3. [31] Let d be a sample set whose class is no worse
than class d;. The lower approximation and upper approxima-
tion are:

Rpd> = {z € Ul[a]; C d7} (7

RadZ = {z € Ul[a]3 ndZ + @} ®)

The feature dependency on an ordinal dataset is defined
as follows.

Definition 4. [32] Given an ordinal dataset OD = {U,C U
{d}} and B C C, the monotonic dependency of d respect to B
is defined as:

U~ Ui BNDp(d;)|

)
U]

yu(d) =

Where t is the number of classes, BNDp(d;) is the class bound-
ary of d; in terms of feature set B, BNDp(d;) = BNDp(d;) =
BNDp(d;) = Rpd; — Rd; .

According to different purposes, feature selections on
different senses were defined[33], [34]. Ref. [35] defined an
feature selection on ordinal dataset based on the feature
dependency.

Definition 5. [35] Given an ordinal dataset OD = {U, C U
{d}} and B C C, the feature selection on an ordinal dataset is
that from feature set C we selected the feature subset B which
satisfies two conditions:

(1)  Sufficiency condition: yp(d) = yo(d);
(2)  Necessity condition: Ve € B,yg_(,(d) < yc(d).

2.2 Discernibility Matrix
Ref. [28] defined the discernibility matrix and discernibility
function on information system.

Definition 6. Given an information system IS = (U,C), the
discernibility matrix of the information system IS is n x n
matrix, which is defined as M" = {m/}, where m[; = {c €

Clf (@i, ) # flxj,0)}

Definition 7. Given an information system IS = (U,C), the

dlscermbzlzty matrix M' = {m 3, ml —{ceC|f(x,, c) #

f(zj,c)}, then the discernibility functzon of a discernibility is
defined as,

oD = A\ { \/(ml) Vs, z; € Uyml, # @} (10)

Then Ref. [27] extended the definition of discernibility
matrix from information system to dataset as follows:
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Definition 8. Let D = (U,C U{d}) be a consistent dataset.
Then the class-relative discernibility matrix is defined as
MP = {m[7}, where

mP — {{CGCLf(‘Th )#f(.fj,C)}, f(xl7d)7éf(xj7d)

ij mf-, otherwise
(11)
2.3 REMT

Hu et al. [4] proposed a monotonic decision tree algorithm
REMT, which had a good robustness and could solve the
conflict between the monotonicity and generalization ability
to a certain extent. The method can generate a rule-set
which is simple and easy to understand. The REMT algo-
rithm is listed in Algorithm 1.

Algorithm 1. REMT

Require: criteria: features of samples; decision: class labels of
samples; e: stopping criterion;
Ensure: a monotonic decision tree 7'.
1: generate the root node.
2: if the number of samples is 1 or all samples are from the
same class, the branch stops growing.
3: otherwise,
4: for each feature a;, do
5:  foreach ¢; € V,, (V,, is the domain of value of a;), do
6.
7
8

divide samples into two subsets according to c;,
if f(a;,z) < ¢; then

: put z into one subset, and set f(a;,z) =1,

9: else

10: put z into the other subset, and set f(a;,z) = 2.

11: end if

12: denote now a; with respect to ¢; by a;(c;), compute
RMI,, = RMI=({a;(c))},{d}).

13:  end forj

14: ¢ =arg maXJR]UI

15: end for i

16: select the best feature a* and the corresponding point ¢*:
(a*, ¢")arg max; max; RMI=({a;(¢;)}, {d}).

17: if RMI=({a*},{d}) < e, then stop.

18: build a new node and split samples with a* and c*.

19: recursively produce new splits according to the above pro-
cedure until stopping criterion is satisfied.

3 FusING COMPLETE MONOTONIC DECISION
TREES

In this section, we will explain the proposed FCMT method
in detail. A discernibility matrix for the ordinal dataset is
generated, and then we get a set of complete feature subsets
through the matrix. Based on the subsets, a complete mono-
tonic decision forest for monotonic classification are obtained.

Similar to the general classification problem, the training
samples for the monotonic classification problem also have
some redundant or unrelated features which may affect per-
formance of classify model and the decision maker’s under-
standing to the essence of problem. So more important
information in a dataset could be extracted by obtaining
the feature subset on ordinal dataset. The selected feature
subset should keep the same approximation ability for clas-
sification results as original feature set, that is to say, the
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dependency of class respecting to feature subset and the
dependency of class respecting to original feature set should
be identical. Moreover, redundant features should not be
include in selected feature subset.

Here a method of feature selection based on discernibil-
ity matrix is proposed, which can obtain complete feature
subsets under one variable precision parameter value only.
Thus the number of feature sets can be reduced greatly and
then the classification model could be simplified.

3.1 Discernibility Matrix for Ordinal Dataset
Although some discernibility matrix constructing approaches
were proposed, most of them were defined on the general
datasets and they can’t be used in the ordinal dataset directly.
An discernibility matrix for ordinal dataset is proposed in
this section.

We first divide samples in an ordinal dataset into two
sets: monotonically consistent set and non-monotonic set.

Definition 9. Let OD = (U,C' U {d}) be an ordinal dataset, C
the feature set, {d} the class. Under the varlable precision
parameter B, the monotonically consistent set U 1 is defined as:

w55 | ] N
=21 if llalzl < mo

B _ l[=lZNlel5 | . <
Uy = x| w2 1-8, if lzlel < mo
c
T = & = ] S, T < .
x| lzlgnlelg | ]Cmi i >1- 8, lelgOlelg | ](,mi I >1—B¢, otherwise
[l]5] [l=]al

(12)

Where 0 < 8 < 0.5, ng, which is much smaller than the
size of dataset, is a constant not less than 1. That is, when
the number of samples which dominates x is very small,
we judge the monotonic consistency of = by considering the
samples dominated by x. In the same way, when the number
of sample set dominated by z is very small, we determine the
monotonic consistency of x by considering the samples which
dominates z. And the non-monotonic set UVA 1s,

UIﬂVM =U~- Uﬁr (13)

In consideration of the sample consistency, we define the
discernibility matrix on ordinal dataset as follows.

Definition 10. Let OD = (U,C U {d}) be an ordinal dataset,
C' the feature set, {d} the class. The discernibility matrix on
ordinal dataset M© is defined as Egs. (14) and (15),

MO = {m, 14
mg =
{c e C|(z;,;) ¢ R{i}}, if (zi,zj) ¢ R{Sd} and x;,x; € UL,
{c e C|(z;,z;) ¢ R{SC}}, if (5'377%) ¢ R{Sd} and x; € Uy, x; € UﬁvM
{c€ Cl(wia)) & RYyY,  if wae > g for Vg and mi,z; € URy,
a, otherwise
(15)
In Eq. (15), p1;; and p;, are as follows:
iy N 7 |
g =tk (16)

i1y
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15y N 7 |

an
|[:] {Zc} |

Mo =
In Eq. (15), in order to preserve the monotomClty x; will be
replaced by 2, when z; € UY, and z; € U, ;. ; has the same
feature values with z;, but their class Values are different.
Define the probability that z; belongs to the class which
dominates dj, as follows:

1y N di |
P(d(zj) > dy) = ———"=—— (18)
|[33j]{c}|
Then, the probability that 2; belongs to the class d. is,
Pld(x)) = di) = P(d(z;) = di) — P(d(x;) = dyi1)
el | el |
\[r]‘]i}:df\ ’ bt
B
(19)
So the class value of ', is,
d;, = arg max P(d(z;) = dy). (20)
k

Note:

1)  If the class values of two samples in the monotoni-
cally consistent set do not fulfill ordinal relation

R{Sd}, the features on which the two samples don’t

fulfill ordinal relation R , will be put in the discerni-
bility matrix.

2) If z; belongs to the monotonically consistent set
while z; belongs to the non-monotonic set, we will
modify the class value of sample z; with z; accord-
ing to Eq. (20). When the class values of samples z;

and .CL/l do not satisfy the ordinal relation R{Sd}, the

features on which the two samples don’t satisfy the
ordinal relation R{SC} will appear in the discernibility
matrix.

3) If both the two samples belong to the non-monotonic
set, we will compute the 1« values for each class d . 1,
represents the probability that z; belongs to the class
which dominates dy. If 1, is greater than 1, on each
class d; (which means z; has a higher probablhty of
belongmg to a superior class value than z;), then ordi-
nal relation R{Sd} is not true for z; and z;. So discer-
nibility matrix should include the features on which
the two samples don’t satisfy ordinal relation R{SC}.

By means of the definition of discernibility matrix, the
corresponding ordinal discernibility function is defined.

Definition 11. The ordinal discernibility function based on the
ordinal discernibility matrix is defined as,

F0) = NN Qv z; € U.mG £ 2}, @1)

Through Eq. (21), the set of all prime implicants of f(M9)

determines the set of complete feature subsets. To illustrate
the proposed idea clearly, a simple case is given as follows.
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Example 1. Table 1 is an ordinal dataset including six sam-
ples from the dataset “Bankruptyrisk”. We selected two
samples in each class.

According to Eq. (15), the discernibility matrix is Eq. (22),

@ @ {b7c7f7gﬂh7l} {b7f7h7i’j7k7l} {C’f7g7h7i}
) {c, g} {e. f9,4,1} {e, f,9,1}
MO_)P O @ @ {f.i}
Yo @ @ %} {c, f.g}
o @ & o o
g @ @ @ &

So the discernibility function is,

f(Mp)=1{bVeV fVgVhVI}A{bY FVAViIViVEVI}
AeV fVgVhViYA{bVeV fVgVhVi}
AMeVgyA{eV FvgVvivI} eV fVvgVvil
AV} A{eVFVgyA{cV fVgVh}
={cvgin{fvi}

={cAftvignfivieniyvigni}.
(23)

In this way, all feature subsets, {c, f},{g, [}, {c,i} and
{g,1}, could be obtained.

3.2 Fusing Complete Monotonic Decision Trees
It is well known that ensemble leaning, which applies multi-
ple learners to solve one problem, can improve generaliza-
tion performance of a learning system. Decision forest is one
kind of ensemble leaning manner, in which decision trees
are considered as base learners. Here monotonic classifica-
tion problem is solved through constructing decision forest.
Two aspects should be considered: training multiple deci-
sion trees and fusing these classification results of all trees.
For the first problem, we need to generate some different
decision trees, which can be achieved by applying different
data sets. There are often three kinds of ways: using some
different samples of training dataset, choosing some differ-
ent features from all the features and combining the first
and second methods. Because the completed feature subsets
are obtained we adopt the second one here. Another diffi-
culty is to determine the number of decision trees. To solve
the difficulty, we set the number of decision trees as the
number of obtained feature subsets. A decision tree can be
generated on a dataset, whose features are all the features of

TABLE 1
Ordinal Dataset from “Bankruptyrisk”
sample a b ¢ d e f g h i j k 1 dass
it 2 2 2 1 1 4 4 4 4 4 2 4 3
To 21 3 11 3 5 2 4 2 1 3 3
T3 21 1 1 1 3 2 2 4 4 2 3 2
T4 21 2 1 1 2 4 3 3 2 1 2 2
5 2 2 1 1 1 1 3 3 3 4 3 4 1
T 2 1 1 1 1 1 2 2 3 4 3 4 1
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a feature subset obtained by last section, so each feature
subset can construct a decision trees correspondingly. Then
a decision forest can be obtained. Here we construct base
decision trees through employing REMT method [4], which
can be used to get a monotonic decision trees.

{b7 c? f7 g7 h’ i}
{e, f, 9,1}
{f,i}

{c, f.g.h}
o

o

(22)

For the second problem, each decision tree gives a class
value by its own classification rules for a new sample x, so
the final result will be integrated using a weighted voting
method. Each tree has a variable weight that is computed
by one of its leaf nodes, which gives the classification result
of z in this tree by its rules. For the z, the weight of class dj,
in ith decision tree o, is computed as follows:

|Leaf} |

“b = TLeafi] 2
where |Leaf} |is the number of samples whose class is d;. on
the leaf node of the ith decision tree, and |Leaf?| is the num-
ber of all samples on the leaf node of the ith decision tree.

Based on the above-mentioned constructing method
of decision forest, the proposed FCMT is summarized as
Algorithm 2.

Algorithm 2. FCMT

Require: a ordinal dataset OD = (U, C' U d); variable precision:
B; stoping criterion of REMT: ¢; an sample depicted by A: .
Ensure: the class of sample .
1: divide the samples in ordinal dataset into two sets, mono-
tonically consistent set and non-monotonic set, by Eq. (12).
2: produce ordinal discernibility matrix by Eq. (15).
3: compute ordinal discernibility function by Eq. (21) and get
the feature subsets FS = {fsi,..., fs,}.
4: for fs; to fs, do
learn a tree T; with REMT.
6:  for sample z, compute the weight o} of decision tree T;
voting dj, (k =1,2,...) by Eq. (24).
: end for ( n

8: return the final class: dj, = arg max Z w}f) .
k i=1

ar

N

Now, we explain the working process FCMT algorithm.
It can be understood through an illustrative example.

Example 2. We generate a dataset containing 12 samples by
selecting randomly 6 samples in each class from the data-
set “Adult”, in which there are 14 features, as shown in
Table 2. In this dataset, samples z; to z;( are treated as
the training set of constructing monotonic decision trees,
and samples z1; to x12 are looked forward as the test set
of evaluating the performance of this model.

We set B to 0 and ng to 1. According to Eq. (12) all the ten
samples are in the monotonic consistent set. Then, the ordi-
nal discernibility matrix is produced as Eq. (25).
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TABLE 2 TABLE 4
Ordinal Dataset from “Adult” Training Subset with Features {f, j, b, g,%}
sample a b ¢ d e f g h i j k I m n class sample b f g i j class
T 211 1 22 5 212112 1 2 T 1 2 5 1 2 2
T 241 2 11 8 212112 1 2 T 4 1 8 1 2 2
T3 161 2 11 3 3521111 2 T3 6 1 3 5 2 2
Ty 251 4 1111 352112 1 2 Ty 5 1 11 5 2 2
T 22111 2110 312112 1 2 5 2 1 10 1 2 2
T 221 4 11 5 312112 1 1 T 2 1 5 1 2 1
T7 21111 23 6 41121 2 1 1 x7 1 3 6 1 1 1
T 211 1 21 5 3122121 1 T 1 1 5 1 2 1
g 211 2 11 5 35211 2 1 1 g 1 1 5 5 2 1
T 26 1 1 21 6 3 2211 2 8 1 T 6 1 6 2 2 1
11 25110111 3121121 2
T19 211 5 21 6 3122121 1
So, the weight sum of d; from two trees is 0.83, while the
And the ordinal discernibility function is: évle1ght sum of dy is 1.17. Then sample z; is classified into
. : ) ass 2 at last.
FMo) ={fANFADANd}V{fAFAbAgNi}.
oo oo {af () v ey N
o o o o o {bg Abgj {bdg  {bg}  {dg}
o o o o @ {bi} {bij} {bdi} {b} {d,i}
g @ @ @ @ {bgi} {bgij} {bdgi} {bdg} {dgi}
yo_19 @ @ @ @ {degt {bgj {bdgt {bdeg} {dg} 25)
g g 9 I 9 %) %) %) (%) %)
[ % B % B % B ] (%) %) (%) (%) %)
g g 9 I g %) %) %) %) %)
[ % B % I % B ] %) %) %) %) %)
[ S % B % I % B ] %) %) %) %) %)

So the feature subsets are { f, j,b,d} and {f, j, b, g,4}.

Next, two training subsets is generated by these two
feature subsets, which are shown as Table 3 and
Table 4.

A monotonic decision tree can be learned with REMT
algorithm on each training subset. The trees 7; and 75
learned from these two training subsets and their nodes
weight are shown as Fig. 1.

According to the trees 77 and 75, sample z;; in test set is
both classified into Class 2, and has two weights in Class 1
and Class 2 respectively, as follows:

w}il =0.33, wéz =0.67;

w?,l =0.5, w?iz =0.5.

TABLE 3
Training Subset with Features {f, j, b, d}
sample b d f j class
z1 1 1 2 2 2
Zo 4 2 1 2 2
T3 6 2 1 2 2
24 5 4 1 2 2
z5 2 11 1 2 2
Z6 2 4 1 2 1
z7 1 11 3 1 1
Zs 1 1 1 2 1
Zg 1 2 1 2 1
10 6 1 1 2 1

Sample z; is both classified into Class 1 by two trees and
also has two weights in Class 1 and Class 2 respectively, as
follows:

wbl = 0.75, wcll2 = 0.25;

“’(211 =1, wle =0.

So, the weight sum of d; and dy from two trees are 1.75
and 0.25 respectively. Then sample z, is classified into
Class 1 at last.

3.3 Time Complexity

The running time of FCMT method is mainly composed of
two parts: the time of constructing discernibility matrix and
feature subsets; the time of generating decision trees.

Before constructing discernibility matrix, the samples in
dataset should be divided into two sets: the monotonically
consistent set U); and the non-monotonic set Uyy;. To
judge the consistency of each sample, we need to traverse
the m features of each sample. Then its time complexity is
O(mn?). Next, discernibility matrix will be constructed by
pairwise comparison of all the samples: (1) For two sam-
ples both in set Uy, we need to compare their m features
in turn, and the time complexity of computing discernibil-
ity features of these samples is O(m|Uy|*). (2) For two
samples, one of which in set Uy and the other in set Uy,
the class label of sample in set Uy should be modified.
Supposing that dataset was be divided into ¢ classes, the
time complexity of modifying these class labels is O(tn).
Then the time complexity of computing discernibility fea-
tures of these samples is O(tn|Unar|) + O(m|Un||Unisl). (3)
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(a) Monotonic decision tree T} trained with features {f, j,b,d}

Fig. 1. Monotonic decision trees trained with two data subsets.

For two samples both in set Uy, i of sample to each class
need to be calculated and its time complexity is O(tn). Then
the time complexity of computing discernibility features of
these samples is O(tn|Un|) + O(tm|Una ). Finally, the fea-
ture subsets are obtained based on discernibility matrix, and
its time complexity is O(mn?). The sum of the time complexi-
ties of above steps is as follows:

O(mn?) + O(m|Un[*) + O(tn|Unas|) + O(m|Unf||Unas])
+ O(tn|Unar|) + O(tm|Unas|?) + O(mn?)
< O(mn?) + O(mn?) + O(tn?) + O(mn?) + O(tn?)
+ O(tmn?) + O(mn?)
= 0(4mn?) + O(2tn?) + O(tmn?).
(26)

So the time complexity of first part is O(tmn?).

When the decision tree is generated, the time complexi-
ties of non-leaf nodes and leaf nodes should be considered
separately. In non-leaf nodes, the features (Iess than m) in
feature subsets need to be considered in turn. Taking the v
values in feature range as the split points, and rank mutual
information will be computed under each split points. We
need to traverse all the samples for the rank mutual infor-
mation of each sample. Then the time complexity of this
process is at most O(mvn?). In leaf nodes, we need to tra-
verse all the samples in this nodes to compute support
degree of each class of this node. Then the time complexity
in leaf nodes is at most O(n). So supposing that the numbers
of non-leaf nodes and leaf nodes in the decision forest are &;
and k, respectively and the number of feature subsets is h,
the time complexity of second part is O(hn + kymvn? + kyn).
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(b) Monotonic decision tree T trained with features {f, j,b,g,}

Therefore, the time complexity of FCMT method is
O(tmn?) + O(hn + kymwn? + kan).

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Experimental Data and Evaluation
In order to test the performance of our approach, we
employed ten datasets, which are same as Ref. [26] and are
shown in Table 5. In this table, Students Score is a real-
world dataset.

The classification accuracy (CA) and the mean absolute
error (MAE) are used to verify the performance of the pro-
posed approach and reference models,

Zz,veU I(@:,yi)

CA = 27

T 27

MAE — Zl'ﬂf"Uyli — uil (28)

where I(y;,y;) = { (1)’ Zf ; z‘ , y; is the real class of x; and ¥;

is the forecasting class of z; by classifier.

4.2 Effectiveness of Feature Selection

In this section, we will verify the effectiveness of feature
selection based on discernibility matrix by observing the
gap between the mean dependency y on feature subsets
and the dependency y on all features. The dependency of
each feature subset is computed at first, and then we com-
pare their mean value y with the dependency y on original
feature set. If y is always similar to the dependency of origi-
nal feature set y, the feature subsets can be regarded as

TABLE 5
Datasets Used in the Experiments

Type Data set Num. of samples ~ Num. of features (numeric | nominal) ~ Num. of classes
Adult 500 14 (0| 14) 2
Bankruptyrisk 39 12(0|12) 3
Wine 1599 11(0|11) 2
Squash 50 24(2212) 3

UCI or Weka datasets  Car 1728 6(0]6) 4
German 1000 20(7|13) 2
Australia 690 14(6(8) 2
Autompg 392 7(017) 4
Swd 3240 10(0|10) 3

Real world dataset Student Score 512 25(2510) 3
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Fig. 2. Dependencies on 10 different training sets.

effective. We get ten pairs of dependencies y and y by exe-
cuting ten experiments which use ten different training
datasets from 10-fold cross validation. The experiment
results are shown in Fig. 2.

From Fig. 2, it can be observed that the difference
between the dependency ¥ and y is small on all datasets.
For Adult, Bankruptyrisk, Car and Australia, the dependen-
cies y and y almost have no difference on ten experiments.
For Wine, there is only one slight deviation on 3rd experi-
ment. The number of dependency y with slight deviation is
five at most on one dataset, but all the differences are very
small (no more than 0.05). Therefore, we conclude that these
feature subsets could keep the same approximation ability
for classification results as original feature set, which means
that the feature subsets are effective.

4.3 Tuning Variable Precision Parameter 3

The experiments in this section will testify the classification
performance of the proposed FCMT with different variable
precision parameter . For each dataset, 10-fold cross vali-
dation technique is used, in which 90 percent data are

served as the training data and the remained samples are
used as the test data.

For fair comparison, we set € = 0.01 in experiments like
[4], and then observe the influence of 8 on classification per-
formance. Let g vary from 0 to 0.3 with a step length 0.02.
We compare classification accuracy and mean absolute
error of FCMT, REMT and FREMT under each B value. The
experiment results are shown in Figs. 3 and 4 respectively.

In this experiment, REMT has a constant CA and MAE in
each different g value. From Figs. 3 and 4, we can see that in
most B values our method FCMT have higher CA and lower
MAE than REMT and FREMT in most datasets. Especially
in five datasets (Wine, German, Australia, Autompg and
Swd), FCMT have better indicator values under all kinds of
B value. In addition, in all datasets FCMT is superior to
REMT for two indicators, while FREMT sometimes is infe-
rior to REMT in some B values. This is because FREMT
method adopts a heuristic search strategy, which may not
obtain all feature subset in one g value. Particularly, When
B > 0.16, FREMT can not find feature subsets, while FCMT
can get all the feature subsets under each g value.
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Fig. 3. The average value of classification accuracies of each g value.

Win-tie-loss (W-T-L) summarization table is shown in
Table 6. A win means that the former method is better than
the latter method on a criterion, while a loss means that the
former method is worse than the latter method. A tie means
that both methods have the same performance. From
Table 6, It can be seen clearly that FCMT is superior to both
the reference methods.

4.4 Performance of the Proposed FCMT
In this section, we compare the number of trees, classify
accuracy and mean absolute error of these three methods
under their best parameter values respectively. For FREMT,
we integrated all g values (8 varied from 0 to 0.16 with a
step length 0.02 and ¢ = 0.01) like Ref. [26], which means
the feature subsets need to be computed under 9 different
parameter values. And 10-fold cross validation technique is
also used in each method. The comparisons are listed in
Table 7.

From Table 7, it is obvious that FCMT has much fewer
trees than FREMT. Especially on the data sets with more
features, such as Adult, Squash and German datasets, the

(h) Autompg

(i) Swd

dominance is more evident (They have 14, 24 and 20 fea-
tures, and their numbers of trees have reduced by 88.9, 91.8
and 83.3 percent, respectively). On these datasets, the lowest
reduced percentage is 50 percent, while the highest reduced
percentage reaches up to 91.8 percent. Also, FCMT have
higher CA and lower MAE than the REMT on all the data-
sets. The FCMT has better indicator values than the FREMT
on all the dataset except German and Australia, in which
the difference between the indicators of two methods is also
very small (not more than 0.017). The above experiments
support that the proposed FCMT is effective for simplifying
the model and improving classification performance.

4.5 Verifying on Real World Dataset

To verify the effectiveness of FCMT in real world, we carry
out the experiments described in Sections 4.2 to 4.4 on a real
world dataset Student Score, which includes 512 students
coming from Software Engineering of grade 2010 in Shanxi
University and their scores of 25 courses (features). These
students are decided into three groups according to their
scores: 122 students with excellent academic achievement,
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Fig. 4. The average value of mean absolute errors of each g value.

269 students with ordinary academic achievement and 121
underachievers. The Student Score dataset is a natural
monotonic classification problem and its label distribution
is shown as Fig. 5a.

The three groups of experiments on Student Score are as
follows: (1) compare the dependencies y and y in ten differ-
ent training datasets from the 10-fold cross validation; (2)
compare classification accuracy and mean absolute error of
FCMT, REMT and FREMT under different 8 values which
varies from 0 to 0.3 with a step length 0.02; (3) compare the
number of trees, classification accuracy and mean absolute
error of FCMT, REMT and FREMT under their best parame-
ters respectively. The experiment results are shown in
Figs. 5b, 5¢, 5d and Table 8.

From Fig. 5 and Table 8, we can see that, for Student
Score dataset, the dependencies y and y almost have no dif-
ference on ten experiments. So the feature selection is effec-
tive for real world dataset. For all g values except 0.02,
FCMT have higher CA and lower MAE than REMT and
FREMT. The number of decision tree is determined by the
number of feature subsets obtained from dataset. In the
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existing method FREMT, the feature subsets need to be
computed under 9 different variable precision parameter
values to construct a good classification model. It results in
a large number of feature subsets. But in the proposed
FCMT method, the feature subsets are computed only
under one parameter value since FCMT can obtain a group
of complete feature subsets, whose completeness makes
them have a small number and can be used to construct a
better classification model. So in the best parameter values,
FCMT has much fewer trees than FREMT (The number of
trees reduces by 88.1 percent). In addition, the completeness
of feature subsets ensures that decision trees learned from
these subsets have good diversity and coverage. Although
the small number of parameters make the number of

TABLE 6
W-T-L Summarization Table
Method FCMT-REMT FCMT-FREMT
CA 144-0-0 81-0-5
MAE 144-0-0 81-0-4
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TABLE 7
Comparison on Number of Trees, CA, and MAE
Dataset Num. of trees CA MAE
FREMT FCMT REMT FREMT FCMT REMT FREMT FCMT
Adult 36 4 0.604 £0.126 0.774 £0.034 0.790 £0.049 0.396 £0.126 0.226 +£0.034 0.210 + 0.049
Bankruptyrisk 27 6.4 0.650 +0.139 0.858 +0.108 0.858 +0.072 0.350 +0.139 0.142 +£0.108 0.142 + 0.072
Wine 14 4.3 0.465 £ 0.063 0.626 £ 0.032 0.683 +0.053 0.535+0.063 0.374 +£0.032 0.317 £ 0.053
Squash 68 5.6 0.580 +0.145 0.740 +0.089 0.800 + 0.092 0.480 + 0.147 0.260 + 0.089  0.250 + 0.092
Car 12 6 0.817£0.031 0.871 £0.011 0.907 +0.025 0.203 +0.031 0.148 £0.011 0.111 + 0.032
German 45 7.5 0.529 £0.032 0.711 £0.037 0.695 £ 0.053 0.471 £0.032 0.289 + 0.037 0.305 + 0.053
Australia 47 8.2 0.586 £0.055 0.7354+0.045 0.718 £0.037 0.414 +0.055 0.265 +0.045 0.282 + 0.037
Autompg 27 6 0.528 £0.054 0.594 +0.070 0.696 + 0.066 0.513 +0.054 0.431 +£0.070 0.315 + 0.068
Swd 14 6.3 0.581 £0.031 0.683 £0.032 0.725+0.041 0.451 +£0.031 0.341 £0.032 0.309 + 0.042
Average 32.22 6.03 0.593 0.732 0.764 0.424 0.275 0.249
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Fig. 5. The class distribution and experiment results on Student Score dataset.

decision trees reduced, the good diversity and coverage
make the classification performance of the proposed FCMT
method improved compared with earlier work. For FCMT,
the percentages of improved CA and MAE are 13.96 and
42.34 percent respectively compared with REMT, and are
0.71 and 4.03 percent respectively compared with FREMT.
Therefore, on real world dataset, FCMT is also able to

TABLE 8
Comparison of Number of Trees, CA, and MAE
on Student Score

Num. of trees CA MAE
REMT - 0.752 +0.044 0.248 + 0.044
FREMT 77 0.851 = 0.054 0.149 + 0.054
FCMT 9.2 0.857 + 0.046 0.143 + 0.046

simplify the classification model and improve classification
performance.

5 CONCLUSION

In this paper, we proposed an approach FCMT to solve
monotonic classification problem. We obtained complete
feature subsets on an ordinal dataset. Then fusing complete
monotonic decision trees method is proposed. Compared
with the popular “random forest” and other ensemble
methods, the advantages of the proposed FCMT are: (1) The
feature selection approach preserves the rank on ordinal
dataset. (2) It automatically selects decision trees and auto-
matically determines the number of decision tree. (3) It exe-
cutes only under a kind of variable precision parameter
value, so FCMT can reduce the number of decision trees
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greatly and obtain good classification performance simulta-
neously. (4) FCMT method is aimed at solving monotonic
classification problem, and it considers ordinal relation and
monotonicity constraint in dataset. Although “random for-
est” and other ensemble methods can be applied to solve
this problem, they cannot obtain the classification rules sat-
isfying the monotonicity constraint.

However, there has no guiding method to selected para-
meter B for FCMT. Besides, the computing cost of ordinal
discernibility matrix and discernibility function might be
expensive. In the future, we will do some research to solve
these two problems. Moreover, our method could be applied
to the service selection problem according to the quality of
service in future, which is one of problems in service com-
puting and a monotonic classification problem essentially.
We plan to design the special algorithm for service selection.

In addition, there are some resemblances between the
regression problem and the monotonic classification prob-
lem indeed. Both regression problem and monotonic classi-
fication problem can deal with the ordinal data. However,
the outputs of the training samples in regression problem
are quantitative real values. A real-valued function is obtai-
ned by learning the training samples, and finally outputs
real values, while the monotonic classification in this manu-
script outputs class labels as final outcome. For monotonic
classification, although there are the ordinal relation among
these class labels, the class labels only show the dominance
relations among them essentially and do not give specific
quantitative values on their dominance quantity. Then, the
training samples in monotonic classification problem only
have qualitative class labels, and the outputs of the classifi-
cation model learning from this samples are also class
labels. In this work, we focus on whether the estimated clas-
ses match the practical classes or not, and do not need to
test the exact values of different samples. But it is a very
interesting project to solve monotonic classification problem
through applying regression technique. First, this problem
needs to convert the class labels of training samples into
numerical values; Second, for the real-valued outputs of
regression technique, a map function between these outputs
and each class should be given. Then, two corresponding
need to be designed. One is designing the rules by which
the class labels of training samples with different feature
values can be converted into numerical values accurately;
the other is finding the reasonable map function. So we will
consider solving above two questions in the future work,
which may provide a new train of thought for monotonic
classification problem. Furthermore, in real life there are
indeed some monotonic problems which need real-value
functions to estimate their specific real values, and it not
only focuses on whether the estimated classes match the
practical classes or not, but also concerns whether the esti-
mated outputs are accurate or not. This kind of problem
needs regression methods to solve, and it also deals with
ordinal data and have a monotonicity constraint in their fea-
tures and outputs. But this paper have not covered this kind
of problem, which will be dealt with in our next research.
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