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a b s t r a c t 

Human granulation intelligence means that people can observe and analyze the same 

problem from various granulation points of view, which generally acknowledge an essen- 

tial feature of human intelligence. Each granulation view can generate a granular struc- 

ture through dividing a cognitive target into some meaningful information granules. This 

means that a large number of granular structures can be generated from the cognitive 

target. However, people can group these granular structures and select some represen- 

tative ones for problem solving. This leads to an interesting research topic: how to effi- 

ciently and effectively group a family of granular structures. To address this issue, we first 

introduce a granular structure distance to measure the difference between two granular 

structures within a unified knowledge representation. Then, we propose a framework for 

grouping granular structures, called GGS algorithm, which is used to efficiently partition 

them. Moreover, two indices denoted as DIS and APD are also designed for evaluating the 

performance of a grouping result of granular structures. Finally, experiments carried out 

for nine data sets show that the GGS algorithm comes as a sound solution from perspec- 

tives of its convergence, effectiveness and scalability. In this way we have proposed and 

experimented with the general framework for discovering the structure inherent in gran- 

ular structures, which can be afterwards used to simulate intelligent behavior of human’s 

abilities of granular structure selection. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

1. Introduction 

Artificial Intelligence refers to ability of a machine to perform tasks through work like a person, and the purpose of

its research is to let this machine work like person. It can be roughly divided into two aspects from the viewpoint of

cognition level. One focuses on understanding and simulating the mechanism of perception including vision, touch, smell,

hearing, and so on. The other concerns on understanding and simulating the advanced cognitive mechanism, such as human

learning, reasoning, decision and solving ability for complex problems. 
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As one of human advanced cognitive mechanisms, granular computing (GrC) is becoming a timely and innovative topic

in artificial intelligence, information processing, data mining and knowledge discovery. Granular computing, as a special

term, is coined by Zadeh and Lin [19–21,61] . In 1979, Zadeh firstly argued that fuzzy information granulation plays a fun-

damental role in human reasoning. Three basic issues in granular computing are information granulation, organization and

causation. As it was pointed out in [59–62] , information granulation involves decomposition of whole into parts; the or-

ganization involves integration of parts into whole; and the causation involves association of causes with effects. In 1985,

Hobbs [12] introduced a concept of granularity to characterize granulation degree used by an observer. In 1992, Zhang and

Zhang [63] pointed out that people can observe and analyze the same problem from various granulation viewpoints, which

is a generally acknowledged feature of human intelligence. In 1998, Yager and Filev [51] stated that human observation,

measurement, conceptualization and reasoning are realized by taking information granularity into account. In particular, in

1997, Zadeh [60] proposed a so-called granular computing as a new independent research area in intelligent information

processing. In order to come up with a uniform terminology, we call the above discussed cognition abilities granulation

intelligence . To date, the granulation intelligence-based information processing has been applied to various fields that in-

clude rough set theory, clustering, machine learning, complex network, data mining and knowledge discovery, and others

[3,4,7,28,40,43,44,54,56,57] . 

To date, there are several focal points in granular computing, which include measure of granularity [12,17,33,42,48,55,64] ,

information processing includes databases [13,19,20] , framework of granular computing [21,24,25,35,41,62] , problem solving

based on “granulate and conquer” principle and quotient theory [63] , multigranulation view [31,34,38,39,45–47,50,52] , and

their applications. Just having this quick look, one can note that these developments evolve into a field of cross-disciplinary

study. 

In human granulation intelligence, a granule is regarded as a clump of objects drawn together by indistinguishability,

similarity, connectivity and proximity of functionality [17,19,26,27,60] . Granulation of an object set leads to a collection of

granules. In categorical data analysis, objects with the same attribute-values can not be differentiated each other, which

can be putted into a granule according to the indistinguishability. In social network analysis, some potential societies can

be discovered through analyzing connection relationships among members, which are looked forward as base granules in a

social network. The granules construct base computing units in the granulation intelligence-based information processing. 

A granular structure is a mathematical structure of the collection of granules, in which the inner structure of each granule

is visible (a granule is a white box) and the interactions among granules are detected by the visible structures [19–21,33] .

In granular computing, we often granulate a set of objects into some granules based on a feature subset through a feature

selection algorithm [5,11] . The granulation of objects induced by an equivalent relation is a set of equivalence classes, in

which each equivalence class can be regarded as an (Pawlak) information granule [25,29,32] ; the granulation of objects

induced by a tolerance relation generates a set of tolerance classes, in which each tolerance class also can be seen as a

tolerance information granule [16,30,32] . By using a general binary relation, objects are granulated into a set of information

granules, called a binary granular structure [14,19,20,35] . 

In granular computing, one often needs to measure the granulation degree of objects in a given data set, called in-

formation granularity . In general, the information granularity represents discernibility ability of information in a granular

structure [37,42] . The smaller the information granularity, the stronger its discernibility ability [22] . As mentioned by Prof.

Zadeh, in general, information granularity should characterize the granulation degree of objects from the viewpoint of

hierarchy [23,60] . This provides a point of view that an information granularity should characterize hierarchical relation-

ships among granular structures. How to calculate the information granularity of a granular structure has been an impor-

tant issue. To date, several forms of information granularity have been proposed according to various views and targets

[17,18,29,32,33,42,48,55] . Recently, Qian and Liang [33] presented an axiomatic definition of information granularity in a

knowledge base, in which several existing forms of information granularity arise as special cases. From the axiomatic def-

inition, the size of information granularity does not depend on the sizes of information granules, but some array of them.

In a sense, the information granularity could be used to distinguish two granular structures. However, when the informa-

tion granularity of one granular structure equals to the one characterizing another structure, one can say that these two

granular structures possess the same granulation degree, however these two granular structures may be not equivalent. This

means that an effective distance between two granular structures becomes imperative; this will be also quite apparent in

this study. 

In human granulation intelligence, a cognitive subject can observe various granular structures of an object from multiple

perspectives or scales. This intelligence can be illustrated by two examples shown in Fig. 1 . In Fig. 1 (a), it can be seen that

a cognitive subject can granulate a picture considering different partitions when the distance between the person and the

picture varies from d 3 to d 1 . In Fig. 1 (b), we can see that a society could be divided into several much smaller societies

while the connection constraint is strengthened [49] . However, these observed granular structures are not all necessary for

problem solving or the requirement of a cognitive subject, which can be induced to two reasons. One is that the lifetime of

some of granular structures observed is very short, while a cognitive subject is interested in those robust granular structures

with much longer life spans. The other is that a cognitive subject does not need all granular structures for a practical solving

task. In Fig. 1 (a), it is easy to see that the granular structure with 1 class, that with 3 classes and that with 9 nine classes

are observed when the distance between the eye and the picture are d 3 , d 2 and d 1 , respectively, which are three robust

and stable granular structures for a cognitive subject. For a society discovery task, although various society partitions with

the same number of societies can be obtained by different methods or parameters, we just need to know which partitions
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Fig. 1. Granular structures granulated by a cognitive subject in human granulation intelligence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are highly representative. Fig. 1 (b) gives their representatives when the number of societies are 3, 5 and 8, respectively.

In fact, people can observe and analyze the same object from these robust and stable granular structures, which is one

of core factors of human granulation intelligence. From the above analysis, it is very important how to search and select

representative granular structures from all observed ones for simulating human granulation intelligence. This leads to an

interesting issue of grouping granular structures. 

The main motivation of this study is to investigate how to effectively group granular structures. As we know, there ex-

ists many forms for representing a granular structure based on different binary relations. To obtain a general method, in

this paper, we first present a unified knowledge representation method for representing a granular structure. Based on the

knowledge representation, we then introduce a method and its corresponding algorithm (just GGS) to rapidly group granu-

lar structures observed from a given data set, which is based on a so-called granular structure distance. The GGS algorithm

not only ensure the convergence of its iteration process, and also can obtain a local optimal solution. The granular structure

with the minimum knowledge distance to the center of a cluster can be selected as the representative of granular structures

in this cluster. In order to evaluate the effectiveness of a program of grouping granular structures, we further give two eval-

uation indices: dispersion and approximation degree. The dispersion is used to characterize the inner dispersion of a set of

granular structures. A grouping program with much smaller dispersion can be thought as a far better one. The approxima-

tion degree characterizes the average approximation ability of a grouping scheme for a given decision partition. The higher

the value of the approximation degree of a grouping scheme, the better the group scheme is. Finally, numerical experiments

completed for nine real data sets from UCI show the effectiveness and scalability of the proposed GGS algorithm. 

The paper is organized as follows. In Section 2 , through reviewing Pawlak granular structures, tolerance granular struc-

tures and neighborhood granular structures, we give a unified knowledge representation method of a granular structure.

Section 3 proposes a so-called knowledge distance to measure difference between any two granular structures and gives

some of its interesting properties. Section 4 presents an effective method for grouping granular structures (just GGS), and

analyzes its time complexity and convergence. In Section 5 , we present dispersion and approximation degree two evalua-

tion indices for evaluating the performance of a grouping scheme. In Section 6 , we test the convergence, effectiveness and

scalability of the GGS algorithm through employing nine real data sets. Finally, Section 7 gives the concluding remarks. 

2. Knowledge representation of granular structures 

In this section, through analyzing the process that human granulate a complex problem into some granules, we estab-

lish a unified knowledge representation method of granular structures. Throughout this paper, we suppose that the set of

granular structures observed by a cognitive subject forms a finite nonempty set. 

Let us recall that a granular structure is a mathematical structure of the collection of granules, in which the inner struc-

ture of each granule is visible (a granule is a white box) and the interactions among granules are detected by the visible

structures [19–21,33] . The granulation of objects induced by a given binary relation has a special representation form itself,

in which its granules have special sematic and meaning themselves. In what follows, we analyze several forms of granular

structures in granular computing. 

1. Granular structure induced by an equivalence relation 

We assume the set of objects U = { x 1 , x 2 , . . . , x n } defined by a set of features A = { a 1 , a 2 , . . . , a m 

} . Each feature a j de-

scribes a domain of values, denoted by V ( a j ), associated with a defined semantic and a data type. A domain V ( a j ) is defined
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Fig. 2. Three kinds of granular structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as categorical if it is finite and unordered, i.e., V (a j ) = { a (1) 
j 

, a (2) 
j 

, . . . , a 
(n j ) 

j 
} , where n j is the number of categories of feature

a j , 1 ≤ j ≤ m . If each feature in A is categorical, then U is called a categorical data set. Let U = { x 1 , x 2 , . . . , x n } b e a set of n

objects, in which x i is represented as a vector (x i, 1 , x i, 2 , . . . , x i,m 

) , x i, j ∈ V a j , 1 ≤ j ≤ m . One says that x i = x k if x i, j = x k, j for

each j ≤ m . The relation x i = x k does not mean that x i and x k are the same object in the real-world database, but rather that

the two objects have equal values in features a 1 , a 2 , . . . , a m 

. In Fig. 2 (a), square frames with the same color can be arranged

as the same granules, and all square frames can be granulated to form seven granules by using the equivalence relation

R induced by seven colors, which give rise to an equivalence granular structure. Formally, U / R constitutes a partition of U ,

called a granular structure on U , and every equivalence class is called an equivalence information granule [6,8,10,24,29,36] .

In general, we denote the equivalence granular structure as 

U/R = { E R (x ) : x ∈ U} . (1)

2. Granular structure induced by a neighborhood relation 

If R i ( i = 1 , 2 , . . . , m ) is a neighborhood relation, then (U, R ) = (U, R 1 , R 2 , . . . , R m 

) can be called a neighborhood knowledge

base [17]. A neighborhood relation R on the universe is a relation matrix M(R ) = (r i j ) n ×n , where 

r i j = 

{
1 , d( x i , x j ) ≤ δ, 
0 , otherwise, 

where d is a distance [14,65] between x and y , and δ is a nonnegative number. Let A, B ⊆AT be categorical and numerical

attributes, respectively. The neighborhood granules of objects x induced by A, B, A ∪ B are defined as 

1. N A (x ) = { x i ∈ U | d A (x, x i ) = 0 } ; 
2. N B (x ) = { x i ∈ U | d B (x, x i ) ≤ δ} ; 
3. N A ∪ B (x ) = { x i ∈ U | d A (x, x i ) = 0 ∧ d B (x, x i ) ≤ δ} . 

In Fig. 2 (b), we can see that all objects within the radius δ of an object are regarded as its corresponding neighborhood.

Each object has its neighborhood itself, and ten objects induce 10 neighborhood granules, which constitutes a covering of U .

Beside the above definition of a neighborhood, k -neighborhood method is also a very important definition of a neighbor-

hood in the existing research, which is only effective for numeric data. The k -neighborhood granules of objects x induced

by B are defined as 

N B (x ) = { x i , i ≤ k } , where x i is the i th object of k nearest-neighbor objects. 

Fig. 2 (c) shows 10 neighborhood granules with k = 2 , in which each object has two nearest neighborhoods and its 2-

neighborhood granules has three objects including itself. This also constitutes a covering of U . 

In general, we denote N ( U ) to be a neighborhood granular structure on U , and a member N R ( x ) from N ( U ) will be called

a neighborhood granule. Formally, we denote the neighborhood granular structure as follows 

N(U) = { N R (x ) : x ∈ U} . (2)

3. Granular structure induced by a tolerance relation 

It may happen that some of the attribute values for an object are missing. For example, in medical information systems

there may exist a group of patients for which it is impossible to perform all the required tests. These missing values can

be represented by the set of all possible values for the attribute. To indicate such a situation, a distinguished value (the
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so-called null value) is usually assigned to those attributes. Generally, we denote the null value by ∗. We define a binary

relation on U by 

SIM(P ) = { (u, v ) ∈ U × U| ∀ a ∈ P, a (u ) = a (v ) or a (u ) = ∗ or a (v ) = ∗} . 
In fact, SIM ( P ) is a tolerance relation on U . The concept of a tolerance relation has a wide variety of applications in classifi-

cations [16,30,32] . It can be easily shown that SIM(P ) = 

⋂ 

a ∈ P SIM({ a } ) . Let S P ( u ) denote the set { v ∈ U |( u, v ) ∈ SIM ( P )}. Then,

S P ( u ) is the maximal set of objects which are possibly indistinguishable by P with u . The set 

SIM(P ) = { S P (x ) : x ∈ U} . (3) 

is called the tolerance granular structure induced by R , and a member S R ( u ) from this set is called a tolerance information

granule. 

Moreover, similar to the above granular structures, some of other binary relations with a reflexive property also can

induce the corresponding granular structures. For example, if R i ( i = 1 , 2 , . . . , m ) is a dominance relation, then (U, 	 ) =
(U, R 1 , R 2 , . . . , R m 

) is called a dominance knowledge base. The set { S R ( u ) | u ∈ U } is called the dominance granular structure

induced by R , and a member S R ( u ) from this set is called a dominance information granule. 

Above modes of granular structures in which the granules are Boolean (B-granular) play important roles in a wide vari-

ety of methods, approaches and techniques. Important though it is, these modes of granular structures have not a unified

representation form, which brings a challenge for studying granular computing from the same perspective. Hence, a unified

representation to granular structures is necessary. 

Given a universe U and R a general binary relation on U , we denote its corresponding granular structure in terms of the

following matrix 

GS(R ) = 

⎛ 

⎜ ⎝ 

p 11 p 12 . . . p 1 n 
p 21 p 22 . . . p 2 n 
. . . . . . . . . . . . 

p n 1 p n 2 . . . p nn 

⎞ 

⎟ ⎠ 

, (4) 

where p ij ∈ {0, 1}, where p i j = 1 denotes that x j is positioned within the granule determined by x i , while p i j = 0 means that

x j is not included in the granule determined by x i . Furthermore, through using granules determined by every object, the

binary granular structure of the universe can be represented as 

GS(R ) = (G R (x 1 ) , G R (x 2 ) , . . . , G R (x n )) , (5)

where G R (x i ) = p i 1 /x 1 + p i 2 /x 2 + . . . + p in /x n . G R ( x i ) is the granule induced by x i . Here, “+” means the union of elements. 

The cardinality of the information granule G R ( x i ) can be calculated with 

| G R (x i ) | = 

n ∑ 

j=1 

p i j , (6) 

which appears to be a natural generalization of the cardinality of a set. 

No matter any binary relation used, this knowledge representation method of granular structures dose not loose any

information, which can be degenerated to its corresponding original version of granular structures. 

In human granulation intelligence, a cognitive subject can observe various granular structures of an object from multiple

perspectives or scales. In these granular structures, those robust and stable granular structures can be captured and recog-

nized, which is one of core factors of human granulation intelligence. For further investigation in this paper, we focus the

representation of multiple granular structures as follows. 

Given a family of binary granular structures GS on U , denoted by 

GS = { GS 1 , GS 2 , . . . , GS m 

} , where GS i = (G i 1 , G i 2 , G i 3 , . . . , G in ) is a granular structure, and G i j = { p 
1 
i j 

x 1 
+ 

p 2 
i j 

x 2 
+ 

p 3 
i j 

x 3 
+ . . . + 

p n 
i j 

x n 
} is

an information granule. 

Throughout this paper, we will use the above unified representation of multiple granular structures. Based on this rep-

resentation, the paper explores how to effectively group granular structures. 

3. Difference between granular structures 

In the literature [53] , Yao presented the concept of set closeness between two sets to measure the degree of the sameness

(being the same) between sets. For A and B being two finite sets, this measure is defined by H(A, B ) = 

| A ∩ B | 
| A ∪ B | ( A ∪ B � = ∅ ) [53] .

Obviously, the formula 1 − H(A, B ) = 1 − | A ∩ B | 
| A ∪ B | = 

| A ∪ B |−| A ∩ B | 
| A ∪ B | ( A ∪ B � = ∅ ) can characterize the difference between two finite

sets. 

Given two granular structures GS(P ) = { G P (x ) | x ∈ U} and GS(Q ) = { G Q (x ) | x ∈ U} , where the information granules

G P (x ) = { p 1 x 1 
+ 

p 2 
x 2 

+ 

p 3 
x 3 

+ . . . + 

p n 
x n 

} and G Q (x ) = { q 1 x 1 
+ 

q 2 
x 2 

+ 

q 3 
x 3 

+ . . . + 

q n 
x n 

} . Based on the view of set closeness outlined above,

we can define the difference between the two information granules G P ( x ) and G Q ( x ) in the form 

| G P (x ) 
� 

G Q (x ) | 
| U| = 

| G P (x ) ∪ G Q (x ) | − | G P (x ) ∩ G Q (x ) | 
| U| , 
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where G P (x ) ∪ G Q (x ) = { p 1 ∨ q 1 x 1 
+ 

p 2 ∨ q 2 
x 2 

+ 

p 3 ∨ q 3 
x 3 

+ . . . + 

p n ∨ q n 
x n 

} , G P (x ) ∩ G Q (x ) = { p 1 ∧ q 1 x 1 
+ 

p 2 ∧ q 2 
x 2 

+ 

p 3 ∧ q 3 
x 3 

+ . . . + 

p n ∧ q n 
x n 

} , and “∨ ”

is a maximum operator, “∧ 

′ ′ is a minimum operator. Simply, we also use the notation d(GS(P ) , GS(Q )) = | G P (x ) 
� 

G Q (x ) | . 
Based on the above considerations, we introduce a so-called granular structure distance for measuring the difference

between two granular structures from the same universe as follows. 

Definition 1. Given a family of binary granular structures GS on U, GS ( P ), GS ( Q ) ∈ GS . Granular structure distance between

GS ( P ) and GS ( Q ) is defined as 

D (GS(P ) , GS(Q )) = 

| U| ∑ 

i =1 

| G P (x i ) 
� 

G Q (x i ) | 
| U| , (7)

where | G P (x i ) 
� 

G Q (x i ) | = | G P (x i ) ∪ G Q (x i ) | − | G P (x i ) ∩ G Q (x i ) | . 
The granular structure distance represents the measure of difference between two granular structures coming from the

same universe. Obviously, 0 ≤ D (GS(P ) , GS(Q )) ≤ | U| − 1 . 

In what follows, we need to verify whether the granular structure is a distance metric prior to using it in the process of

grouping granular structures. 

To address this issue, we first observe several cases existing in the context of sets. 

Let A, B, C be three sets. We consider A ∪ B ∪ C as a new set, and denote a certain array of all objects coming

from this set by Array = (t 1 , t 2 , . . . , t | A ∪ B ∪ C| ) , t i ∩ t j = ∅ , t i , t j ∈ A ∪ B ∪ C . Using this array, we can represent the set A as

A 

′ = { a 1 , a 2 , . . . , a | A ∪ B ∪ C| } by expressing 

a i = 

{
1 if t i ∈ A , 
0 else, 

for t i ∈ Array . 

Using this expression, one obtain the array expressions of A, B and C as follows 

A 

′ = { a 1 , a 2 , . . . , a | A ∪ B ∪ C| } , 
B 

′ = { b 1 , b 2 , . . . , b | A ∪ B ∪ C| } and 

C 
′ = { c 1 , c 2 , . . . , c | A ∪ B ∪ C| } . 

This representation is illustrated by the following example. 

Example 1. Given three sets A = { 1 , 2 , 3 } , B = { 2 , 3 , 4 } and C = { 3 , 4 , 5 } . We compute the new expressions of A, B and C

through using the above method. 

Obviously, we obtain A ∪ B ∪ C = { 1 , 2 , 3 , 4 , 5 } . Assume that the array is Array = (1 , 2 , 3 , 4 , 5) . 

For A , one has A 

′ = (1 , 1 , 1 , 0 , 0) . Similarly, B 
′ = (0 , 1 , 1 , 1 , 0) and C 

′ = (0 , 0 , 1 , 1 , 1) . 

Based on these denotations, we then express the distance between two sets in the form 

d(A, B ) = 

| A ∪ B ∪ C| ∑ 

i =1 

(a i � b i ) , a i ∈ A 

′ 
, b i ∈ B 

′ 
, (8)

where � is an exclusive OR operator. 

Analogously, one has that d(B, C) = 

| A ∪ B ∪ C| ∑ 

i =1 

(b i � c i ) and d(A, C) = 

| A ∪ B ∪ C| ∑ 

i =1 

(a i � c i ) . 

From the above, we formulate the following lemma. 

Lemma 1. Let A, B, C be three sets, then d(A, B ) + d(B, C) ≥ d(A, C) , d(A, B ) + d(A, C) ≥ d(B, C) and d(A, C) + d(B, C) ≥ d(A, B ) .

Proof. Suppose that A 

′ = { a 1 , a 2 , . . . , a | A ∪ B ∪ C| } , B 
′ = { b 1 , b 2 , . . . , b | A ∪ B ∪ C| } and C 

′ = { c 1 , c 2 , . . . , c | A ∪ B ∪ C| } . From (a i � b i ) + (b i �
c i ) ≥ a i � c i , it follows that 

d(A, B ) + d(B, C) = 

| A ∪ B ∪ C| ∑ 

i =1 

(a i � b i ) + 

| A ∪ B ∪ C| ∑ 

i =1 

(b i � c i ) 

= 

| A ∪ B ∪ C| ∑ 

i =1 

((a i � b i ) + (b i � c i )) 

≥
| A ∪ B ∪ C| ∑ 

i =1 

(a i � c i ) = d(B, C) . 

Similarly, d(A, B ) + d(A, C) ≥ d(B, C) and d(A, C) + d(B, C) ≥ d(A, B ) . �

If we use G P ( x i ) ∪ G Q ( x i ) ∪ G R ( x i ) to re-express every information granule through the above expressions and denotations,

one easily knows that 

D (GS(P ) , GS(Q )) = 

| U| ∑ 

i =1 

| G P (x i ) 
� 

G Q (x i ) | 
| U| = 

| U| ∑ 

i =1 

d(G P (x i ) ,G Q (x i )) 

| U| . 
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Table 1 

Granular structures induced by binary relations P, Q and R respectively. 

x 1 x 2 x 3 x 4 x 5 

GS ( P ) { x 1 , x 2 , x 3 } { x 1 , x 2 , x 3 } { x 1 , x 2 , x 3 } { x 4 , x 5 } { x 4 , x 5 } 

GS ( Q ) { x 1 , x 2 } { x 1 , x 2 } { x 3 } { x 4 , x 5 } { x 4 , x 5 } 

GS ( R ) { x 1 , x 2 } { x 1 , x 3 } { x 3 } { x 4 } { x 5 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based this expression and Lemma 1 , the following theorem is obtained. 

Theorem 1. Let GS ( U ) be the set of all granular structures induced by U, then ( GS ( U ), D ) is a distance space. 

Proof. 

1. One can obtain easily that D ( K ( P ), K ( Q )) ≥ 0 from Definition 1 . 

2. It is obvious that D (GS(P ) , GS(Q )) = D (GS(Q ) , GS(P )) . 

3. For the proof of the triangle inequality, one only needs to prove that for any GS ( P ), GS ( Q ), GS(R ) ∈
GS (U) , D (GS(P ) , GS(Q )) + D (GS(P ) , GS(R )) ≥ D (GS(Q ) , GS(R )) , D (GS(R ) , GS(Q )) + D (GS(P ) , GS(R )) ≥ D ( GS ( Q ), GS ( P )) and

D (GS(R ) , GS(Q )) + D (GS(P ) , GS(Q )) ≥ D (GS(P ) , GS(R )) hold. 

From Lemma 1 , it is obvious that for any x i ∈ U , d(G P (x i ) , G Q (x i )) + d(G P (x i ) , G R (x i )) ≥ d(G Q (x i ) , G R (x i )) ,

d(G P (x i ) , G Q (x i )) + d(G Q (x i ) , G R (x i )) ≥ d(G P (x i ) , G R (x i )) and d(G P (x i ) , G R (x i )) + d(G Q (x i ) , G R (x i )) ≥ d(G P (x i ) , G Q (x i )) . Hence,

one has 

D (GS(P ) , GS(Q )) + D (GS(P ) , GS(R )) 

= 

| U| ∑ 

i =1 

| G P (x i ) 
� 

G Q (x i ) | 
| U| + 

| U| ∑ 

i =1 

| G P (x i ) 
� 

G R (x i ) | | U| 

= 

| U| ∑ 

i =1 

d(G P (x i ) ,G Q (x i )) 

| U| + 

| U| ∑ 

i =1 

d(G P (x i ) ,G R (x i )) | U| 

= 

| U| ∑ 

i =1 

1 
| U| (d(G P (x i ) , G Q (x i )) + d(G P (x i ) , G R (x i ))) 

≥
| U| ∑ 

i =1 

d(G Q (x i ) ,G R (x i )) 

| U| 
= D (GS(Q ) , GS(R )) . 

Similarly, one can obtain that D (GS(R ) , GS(Q )) + D (GS(P ) , GS(R )) ≥ D (GS(Q ) , GS(P )) , D (GS(R ) , GS(Q )) +
D (GS(P ) , GS(Q )) ≥ D (GS(R ) , GS(P )) . 

Therefore, ( GS ( U ), D ) is a distance space. �

The above theorem is illustrated with the use of the following example. 

Example 2. Given a set U = { x 1 , x 2 , x 3 , x 4 , x 5 } and GS ( P ), GS ( Q ), GS ( R ) be three granular structures induced by binary relations

P, Q, R on the set U , which are shown in Table 1 . 

Through computing their granular structure distances, we obtain 

D (GS(P ) , GS(Q )) = 

1 
5 (1 + 1 + 2 + 0 + 0) = 

4 
5 , 

D (GS(P ) , GS(R )) = 

1 
5 (1 + 1 + 2 + 1 + 1) = 

6 
5 and 

D (GS(Q ) , GS(R )) = 

1 
5 (0 + 2 + 0 + 1 + 1) = 

4 
5 . 

Hence, one has 4 
5 + 

6 
5 = 

10 
5 > 

4 
5 , 

4 
5 + 

4 
5 = 

8 
5 > 

6 
5 . It is clear that D (GS(P ) , GS(Q )) + D (GS(P ) , GS(R )) ≥ D (GS(Q ) , GS ( R )),

D (GS(P ) , GS(Q )) + D (GS(Q ) , GS(R )) ≥ D ( GS ( P ), GS ( R )) and D (GS(Q ) , GS(R )) + D (GS(P ) , GS(R )) ≥ D (GS(P ) , GS(Q )) . 

From the above discussions, it can be seen that the proposed granular structure distance D is a distance metric on GS (U) ,

which can be afterwards used to group granular structures. 

4. Algorithm for grouping granular structures 

In human granulation intelligence, a cognitive subject can observe various granular structures of an object from multiple

perspectives or scales. However, these observed granular structures are not all necessary useful in problem solving, which

need to be organized for some groups. One of objectives of grouping granular structures is to find several “natural” subsets

so that granular structures within the same clusters are close to each other and those coming from different clusters are

dissimilar from each other according to the predefined similarity metric [1,2] . In this study, the predefined dissimilarity

measure is assigned as the proposed granular structure distance D . 

Based on the granular structure distance D , we can construct a corresponding objective function for a grouping algorithm

for grouping granular structures. An algorithm for grouping granular structures aims to search for a partition of a given

granular structure set into k clusters that minimizes the objective function. Therefore, the objective of clustering a set of n
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Fig. 3. Geometric semantics of granular structures in a cluster and its center. 

 

 

 

 

 

 

 

 

 

 

granular structures into k clusters is to find Z that minimizes 

F (Z) = 

k ∑ 

j=1 

∑ 

GS∈ ω j 
D (GS, z j ) , (9)

where k ( ≤ n ) is a certain number of clusters, and Z = { z 1 , z 2 , . . . , z k } , z j is the j th cluster center. 

In what follows, we propose a granular structure distance-based algorithm for grouping a set of granular structures,

which uses the same diagram of classic K -means clustering algorithm [1] . 

Algorithm 1. The granular distance-based algorithm for grouping granular structures (GGS) 

Input: A set of granular structures GS = { GS 1 , GS 2 , . . . , GS m 

} and the number of groups k ; 

Output: k clusters. 

1. In the granular structures, randomly choose k granular structures as initial cluster centers: z 0 
1 
, z 0 

2 
, . . . , z 0 

k 
. Let l = 0 . 

2. If D (GS i , z 
(l) 
c ) = min 

j 
{ D (GS i , z 

(l) 
s ) } , i = 1 , 2 , . . . , m, then allocate GS i to the cluster ω 

(l+1) 
c , which generates new clusters

ω 

(l+1) 
s ( s = 1 , 2 , . . . , k ). 

3. Compute the center of each new cluster as 

z (l+1) 
s = { G 

(l+1) 
s 1 

, G 

(l+1) 
s 2 

, . . . , G 

(l+1) 
sn } , s = 1 , 2 , . . . , k, 

where 

G 

(l+1) 
s j 

= 

⎧ ⎨ 

⎩ 

1 

n 
(l+1) 
s 

∑ 

GS i ∈ ω 
(l+1) 
s 

p i 1 

x 1 
+ 

1 

n 
(l+1) 
s 

∑ 

GS i ∈ ω 
(l+1) 
s 

p i 2 

x 2 
+ . . . + 

1 

n 
(l+1) 
s 

∑ 

GS i ∈ ω 
(l+1) 
s 

p in 

x n 

⎫ ⎬ 

⎭ 

, s = 1 , 2 , . . . , k, 

where n (l+1) 
s is the number of granular structures in the cluster ω 

(l+1) 
s . 

4. If z (l+1) 
s = z (l) 

s ( s = 1 , 2 , . . . , k ), then the algorithm stops; otherwise, l = l + 1 , goto (2) . 

In the above algorithm, the time complexity of determining cluster labels of n granular structures at each iteration is

O ( kn ). Let the number of iterations be l , we then conclude that the time complexity of the GGS algorithm is O ( knl ), which

is a linear time complexity like the classic K -means clustering algorithm. This implies that the GGS algorithm can efficiently

group a given set of granular structures, which will be also seen in the scalability analysis completed in Section 6.3 . 

Now, we clarify the semantics of cluster centers, which could be helpful for better understanding working mechanism of

the GGS algorithm. To address this issue, we give a geometric representation of a granular structure. For example, there are

three granular structures within the same cluster ω as follows: 

GS(P ) = 

({ 
1 

x 1 
+ 

1 

x 2 
+ 

0 

x 3 

} 
, 

{ 
1 

x 1 
+ 

0 

x 2 
+ 

1 

x 3 

} 
, 

{ 
1 

x 1 
+ 

1 

x 2 
+ 

1 

x 3 

} )
, 

GS(Q ) = 

({ 
1 

x 1 
+ 

0 

x 2 
+ 

0 

x 3 

} 
, 

{ 
0 

x 1 
+ 

1 

x 2 
+ 

0 

x 3 

} 
, 

{ 
0 

x 1 
+ 

0 

x 2 
+ 

1 

x 3 

} )
and 

GS(R ) = 

({ 
1 

x 1 
+ 

1 

x 2 
+ 

0 

x 3 

} 
, 

{ 
1 

x 1 
+ 

1 

x 2 
+ 

1 

x 3 

} 
, 

{ 
0 

x 1 
+ 

1 

x 2 
+ 

1 

x 3 

} )
. 

If these three objects be seen as the three corresponding coordinate x 1 , x 2 and x 3 , respectively, then the three granular

structures can be represented as three triangles, which is shown in Fig. 3 . In terms of this representation, the cluster center
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of them will be also a triangle (see the red triangle Z ω in Fig. 3 ). Although the center Z ω = ({ 1 x 1 
+ 

1 
x 2 

+ 

0 
x 3 

} , { 1 x 1 
+ 

0 . 5 
x 2 

+
1 
x 3 

} , { 0 . 5 x 1 
+ 

1 
x 2 

+ 

1 
x 3 

} ) is not a real neighborhood granular structure, it can be regarded as their cluster center. The cluster

centers can be used to analyze the entire similarity within a cluster. 

In what follows, we will investigate the convergence of the GGS algorithm. As a prerequisite, we first formulate two

lemmas. 

Lemma 2. Given two information granules G P ( x ) and G Q ( x ), x ∈ U. Then, d ( G P ( x ), G Q ( x )) is a Minkowsky metric. 

Proof. Given a n dimensional vector x = (x 1 , x 2 , . . . , x n ) , one has that 

l p : ‖ x ‖ p = 

(∑ n 
i =1 | x i | p 

) 1 
p , i = 1 , 2 , . . . , n, 

l 1 : ‖ x ‖ 1 = 

∑ n 
i =1 | x i | , i = 1 , 2 , . . . , n. 

From Eq. (7) , we have that 

| G P ( x ) � G Q ( x )| 

= | G P (x ) 
⋃ 

G Q (x ) | − | G P (x ) 
⋂ 

G Q (x ) | 
= | max { G P (x ) , G Q (x ) }| − | min { G P (x ) , G Q (x ) }| 
= || G P (x ) − G Q (x ) || 
= ‖ G P (x ) − G Q (x ) ‖ 1 where || G P (x ) − G Q (x ) || indicates the cardinality of the absolute value of G P (·) − G Q (·) . 
Hence, d ( G P ( x ), G Q ( x )) is a Minkowsky metric with l p , where p = 1 , i.e. l 1 metric between two samples. �

Example 3. (Continuation of Example 2 ). From Example 2 , we get G P (x 1 ) = (1 , 1 , 1 , 0 , 0) and G Q (x 1 ) = (1 , 1 , 0 , 0 , 0) , then 

| G P ( x 1 ) � G Q ( x 1 )| 

= | G P (x 1 ) 
⋃ 

G Q (x 1 ) | − | G P (x 1 ) 
⋂ 

G Q (x 1 ) | 
= | max { G P (x 1 ) , G Q (x 1 ) }| − | min { G P (x 1 ) , G Q (x 1 ) }| 
= || (1 , 1 , 1 , 0 , 0) − (1 , 1 , 0 , 0 , 0) || 
= | (0 , 0 , 1 , 0 , 0) | 
= 1 

= ‖ G P (x 1 ) − G Q (x 1 ) ‖ 1 . 
Lemma 3. Given a n dimensional vector sequence { x m }, m = 1 , . . . , ∞ . If its l 2 norm converges to a constant C, then its l 1 norm

converges to 
√ 

n C. 

Proof. The l 1 norm and the l 2 norm of the n dimensional vector sequence { x m }, m = 1 , . . . , ∞ , can be described as 

l 1 : ‖ x m ‖ 1 = 

∑ n 
i =1 | x m 

i 
| , i = 1 , 2 , . . . , n, and 

l 2 : ‖ x m ‖ 2 = 

(∑ n 
i =1 | x m 

i 
| 2 ) 1 

2 , i = 1 , 2 , . . . , n . 

Then, one has 

‖ x m ‖ 2 
1 

= (| x m 

1 
| + | x m 

2 
| + . . . | x m 

n | ) 2 ≤ n (| x m 

1 
| 2 + | x m 

2 
| 2 + . . . | x m 

n | 2 ) = n ‖ x m ‖ 2 
2 
. 

If 

lim 

m →∞ 

‖ x m ‖ 2 = C ⇔ ‖ x m ‖ 2 − C → 0 , m → ∞ , then 

‖ x m ‖ 1 ≤ √ 

n ‖ x m ‖ 2 ⇔ ‖ x m ‖ 1 − √ 

n C ≤ √ 

n (‖ x m ‖ 2 − C) → 0 , m → ∞ , namely, 

lim 

m →∞ 

‖ x m ‖ 1 = 

√ 

n C. 

Therefore, the l 1 norm of the sequence { x m }, m = 1 , . . . , ∞ , will converge to 
√ 

n C. This completes the proof. �

Example 4. Consider a n dimensional vector sequence { x m }, where x m = (1 + 

1 
m 

, 1 + 

1 
m 

, . . . , 1 + 

1 
m 

) , m = 1 , . . . , ∞ . Its l 2
norm converges to 

√ 

n and its l 1 norm converges to n , which are as follows 

‖ x m ‖ 2 = 

√ 

n | 1 + 

1 
m 

| 2 → 

√ 

n 

and 

‖ x m ‖ 1 = n | 1 + 

1 
m 

| → n . 

Through using the above two lemmas, we prove the convergence of the GGS algorithm based on the granular structure

distance. 

Theorem 2. The GGS algorithm based on the granular structure distance is convergent. 

Proof. First, we give a brief analysis that the GGS algorithm is convergent in the sense of l 2 metric. 

From Lemma 2 , we know that granular structure distance can be induced to a Minkowsky metric. Hence, we can assume

that cluster w j has n j granular structures, and the entire distance between the granular structures and the center z j of the

cluster w j is 

f j = 

∑ 

GS∈ w j 

‖ GS − z j ‖ 2 , j = 1 , 2 , . . . , k . 

When assigning the granular structure GS i , i ∈ { 1 , 2 , . . . , n j } from cluster w j to its nearest cluster w k , then cluster w j is

changed to ˜ w j and the cluster center z j is changed to ˜ z j . Similarly, cluster w k and its center is also changed in the same

manner. Obviously, 
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˜ z j = 

n j z j − GS i 

n j − 1 
= z j −

1 

n j − 1 
(GS i − z j ) , 

˜ z k = 

n k z k + GS i 
n k + 1 

= z k + 

1 

n k + 1 
(GS i − z k ) . 

Then, one has ˜ f j = 

∑ 

GS∈ ̃  w j 
‖ GS − ˜ z j ‖ 2 

= 

∑ 

GS∈ ̃  w j 
‖ GS − z j + 

1 

n j − 1 
(GS i − z j ) ‖ 2 

= 

∑ 

GS i ∈ ̃  w j 
‖ GS − z j ‖ 2 + 2 

∑ 

GS i ∈ ̃  w j 
(GS − z j ) ·

1 

n j − 1 
(GS i − z j ) + 

∑ 

GS∈ ̃  w j 

1 

(n j − 1) 2 
‖ GS i − z j ‖ 2 

= f j − ‖ GS i − z j ‖ 2 + 

2 

n j − 1 
(GS i − z j ) 

[ ∑ 

GS i ∈ ̃  w j 
GS − (n j − 1) z j 

] 
+ 

1 

n j − 1 
‖ GS i − z j ‖ 2 

= f j + 

2 − n j 

n j − 1 
‖ GS i − z j ‖ 2 + 

2 

n j − 1 
(GS i − z j )[(n j − 1)( ̃  z j − z j )] 

= f j + 

2 − n j 

n j − 1 
‖ GS i − z j ‖ 2 − 2 

n j − 1 
(GS i − z j ) 

2 

= f j −
n j 

n j − 1 
‖ GS i − z j ‖ 2 

In the similar way, we obtain the following 

˜ f k = f k + 

n k 
n k + 1 

‖ GS i − z k ‖ 2 . 
According to the grouping mechanism, one knows that ‖ GS i − z j ‖ 2 ≥ ‖ GS i − z k ‖ 2 . Thus, 

n k 
n k + 1 

‖ GS i − z k ‖ 2 < 

n j 

n j − 1 
‖ GS i − z j ‖ 2 . 

Summarizing the above, we have that ˜ f j + 

˜ f k < f j + f k . 

It shows that in the sense of l 2 norm, using the principle that assigning a granular structure to its nearest cluster center

with the granular structure distance D can make the value of objective function F ( Z ) converge to the minimum F ∗. Combing

this principle and Lemma 3 together, we have 

F (Z) = 

∑ k 
j=1 

∑ 

GS∈ w j 
D (GS, z j ) 

= 

∑ k 
j=1 

∑ 

GS∈ w j 
‖ GS − z j ‖ 1 

= 

∑ k 
j=1 

∑ 

GS∈ w j 

∑ n 
i =1 ‖ GS(x i ) − z j (x i ) ‖ 1 

≤ ∑ k 
j=1 

∑ 

GS∈ w j 

∑ n 
i =1 

√ 

n ‖ GS(x i ) − z j (x i ) ‖ 2 
= 

√ 

n 
∑ k 

j=1 

∑ 

GS∈ w j 

∑ n 
i =1 ‖ GS(x i ) − z j (x i ) ‖ 2 → 

√ 

n F ∗

that is F (Z) → 

√ 

n F ∗, where n is the number of granular structures to be grouped. This completes the proof. �

Thanks to the convergence of the GGS algorithm, the minimization of F in (9) can be finished when adopting the granular

structure distance D . Though The GGS algorithm often terminates at a local optimum, it is very efficient when processing a

large number of granular structures. 

5. Evaluation on performance of grouping granular structures 

In existing clustering analysis, there are several known evaluation indices for evaluating the performance of a clustering

result, such as clustering accuracy [2] , category utility function [9] , adjusted rank index [15] , which are based on class labels

of objects. If class label of each of granular structures is beforehand given, then these evaluation indices can be directly

used to evaluate the performance of grouping granular structures. However, because grouping granular structures arise as a

new research issue, there are no open granular structure set to be employed for evaluating performance of an algorithm for

grouping granular structures. Hence, there are no known evaluation method to be used for this objective. In this section, we

explore how to evaluate the effectiveness of the proposed method. 

5.1. Dispersion 

As mentioned in Section 4 , the objective of grouping granular structures is to find several natural subsets so that gran-

ular structures within the same clusters are close to each other and those from different clusters are dissimilar from each

other according to the predefined similarity metric. This implies that those granular structures within each cluster should

have high cohesion and low dispersion. To quantitatively characterize the inner dispersion of a grouping result of granular

structures, we introduce a so-called dispersion measure. 

We analyze the case of a cluster including some granular structures. Fig. 4 visualizes a cluster ω u and the granular

structures within it. To measure the dispersion of this cluster, one first regards the center of this cluster as a reference point

and then computes the sum of granular structure distances between every granular structure GS i and this center Z u . The

smaller the value of the sum, the higher the dispersion of this cluster, and the better its clustering performance. 
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Fig. 4. Inner dispersion of granular structures in the same cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on this consideration, we can present the following definition of the dispersion of a grouping result of granular

structures. 

Definition 2. Given a grouping result ω 1 , ω 2 , . . . , ω k of a set of granular structures. The dispersion of the grouping result is

defined as 

Dis (Z) = 

1 

k 

k ∑ 

s =1 

| ω s | 
n 

√ √ √ √ 

1 

| ω s | 
| ω s | ∑ 

t=1 , GS t ∈ ω s 
D 

2 (GS t , Z ω s ) , (10) 

where D (GS t , Z ω s ) = 

1 
| U| 

| U| ∑ 

i =1 

| GS t (x i ) 
⊕ 

Z ω s (x i ) | and | ω s | is the number of granular structures within the cluster ω s . 

From the above definition, we state that for a given k , if the value of the dispersion Dis ( Z ) of a grouping result is much

smaller, one can say this result have much better grouping performance. 

5.2. Approximation degree 

Rough set theory, originated by Pawlak [24,25] , has become a well-established mechanism for uncertainty management

in a wide variety of applications related to artificial intelligence [6,8,10,24,29] . One of the strengths of rough set theory is

that all its parameters are obtained from the given data. The numerical value of imprecision is not pre-assumed, but is

calculated on the basis of approximations which are the fundamental concepts used to express imprecision of knowledge.

In other words, the rough set data analysis utilizes solely the granular structure of the given data, expressed as classes of

suitable binary relations. Based on the idea of approximation in rough set theory, in this subsection, we propose a so-called

approximation degree (APD) for characterizing the average approximation ability of a group of granular structures for a

given decision. 

Let U be a finite and non-empty set called the universe and R ⊆U × U a binary relation on U . Then K = 〈 U, R 〉 is called an

approximation space [6,8,10,24,29] . The binary relation R divides the set U into some subsets, which constructs a granular

structure of U , denoted by GS(R ) = (G R (x 1 ) , G R (x 2 ) , . . . , G R (x n )) . 

Given an approximation space K = 〈 U, R 〉 and an arbitrary subset X ⊆U , one can construct a rough set of the set on the

universe by elemental information granules in the following definition: { 

R X = { x | G R (x ) ⊆ X, x ∈ U} , 
R X = { x | G R (x ) ∩ X � = ∅ , x ∈ U} . 

where R X and R X are called R -lower approximation and R -upper approximation with respect to R , respectively. The order

pair 〈 R X, R X〉 is called a rough set of X with respect to the binary relation R . 

There are two kinds of attributes for a classification problem, which can be characterized by a decision table S = (U, C ∪
D ) with C ∩ D = ∅ , where an element of C is called a condition attribute, C is called a condition attribute set, an element

of D is called a decision attribute, and D is called a decision attribute set. The attribute set D determines an equivalence

relation in the following way: 

R D = { (x, y ) ∈ U × U | d(x ) = d(y ) , ∀ d ∈ D } , 
where d ( x ) and d ( y ) denote the values of objects x and y under a decision attribute d , respectively. This equivalence relation

R D partitions U into some equivalence classes (also called a decision) given by 

U/R D = { [ x ] D | x ∈ U} , for simplicity, U / R D will be replaced by U / D , 

where [ x ] denotes the equivalence class determined by x with respect to D , i.e., [ x ] = { y ∈ U | (x, y ) ∈ R } . 
D D D 
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Fig. 5. Approximation ability of granular structures in the same cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assume the objects are partitioned into r mutually exclusive crisp subsets { X 1 , X 2 , . . . , X r } by the decision attributes D .

Given any binary relation R and its granular structures, then one can define the lower and upper approximations of the

decision attributes D as { 

R D = { R X 1 , R X 2 , . . . , R X r } , 
R D = { R X 1 , R X 2 , . . . , R X r } . 

Denoted by 

P OS R (D ) = 

⋃ r 
i =1 R X i , 1 ≤ i ≤ r , 

it is called the positive region of D with respect to the binary relation R . 

In rough set theory, the dependency function (or level of consistency [24] ) is used to characterize the dependency degree

of an attribute subset with respect to a given decision [13,29] . Given a decision table S = (U, C ∪ D ) , the dependency function

of condition attributes C with respect to the decision attribute D is formally defined as γC (D ) = | P OS U 
C 
(D ) | / | U| . Using this

idea, it can be easily extended to measure the approximation ability of a granular structure for approximating a given

decision with the following form. 

apr(GS, D ) = 

| POS GS (D ) | 
| U| , 

where | ·| denotes the cardinality of a set and 0 ≤ apr ( GS, D ) ≤ 1. 

In this study, we call the above measure an approximation degree. The approximation degree reflects a granular structure

GS ’s power to approximate a given decision D . When apr(GS, D ) = 1 , one says D completely depends on the granular struc-

ture GS . This means that the decision can be precisely described by the information granules from the granular structure GS .

This approximation degree can be used to design a measure for evaluating the performance of a grouping result of granular

structures. 

Definition 3. Given a grouping result ω 1 , ω 2 , . . . , ω k of a set of granular structures, and a decision D . The approximation

degree of the grouping result is defined as 

AP D (Z) = 

1 

k 

k ∑ 

s =1 

| ω s | 
n 

√ √ √ √ 

1 

| ω s | 
| ω s | ∑ 

t=1 , GS t ∈ ω s 
(| P OS GS t (D ) | − 1 

| ω s | 
| ω s | ∑ 

t=1 , GS t ∈ ω s 
| P OS GS t (D ) | ) 2 , (11)

where | P OS GS t (D ) | is the number of objects in the positive region of D with respect to the granular structure GS t . 

Fig. 5 gives | ω| granular structures in a cluster ω and a decision U / D . From the principle of the GGS algorithm, these

granular structures in the same cluster should be close to each other. This indicates that these granular structures could

have similar ability for approximating a given decision. This implies the variance of their positive regions may be small. For

a result of grouping granular structures, we have the same observation. Hence, the approximation degree APD ( Z ) also can

be seen an index of evaluating the performance of a grouping result of granular structures. 

From the above discussion and analysis, we state that for a given k , if the value of the approximation degree APD ( Z ) of a

grouping result is much smaller, one can say this result have much better grouping performance. 

In the experimental analysis in next section, the dispersion DIS ( Z ) and the approximation degree APD ( Z ) will be employed

for displaying the performance of grouping results of granular structures. 

It deserves to point out that because grouping granular structures is a new research issue, the dispersion DIS and the

approximation degree APD are only two tentative indexes, which may not be perfect measures for evaluating clustering per-

formance of a grouping result of granular structures. It should be said that this in itself is a very interesting and important

research problem, which can be further studied in the future. 
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Table 2 

Description of nine publicly available data sets from UCI. 

Data sets Number of samples Number of features Number of granular structures 

1 Soybean-small 47 35 157 

2 Breast cancer 699 9 106 

3 Glass 214 9 404 

4 Haberman 306 3 822 

5 Iris 150 4 731 

6 Hayes–Roth 132 4 45 

7 Seeds 210 7 568 

8 Wine 178 13 248 

9 Zoo 101 16 69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Experimental studies 

The primary objective of the grouping algorithms is to discover the grouping structures inherent in granular structures.

As the assumption is that a certain structure may exist in a given data set, a clustering algorithm is used to verify the

assumption and recover the inherent structure. If the algorithm can discover the structure, then it may form a good solution.

In this section, we aim to test the convergence, effectiveness and scalability of the GGS algorithm for grouping granular

structures from a data set coming with various granulations. 

The nine real data sets used in the experiments are outlined in Table 2 , which were all downloaded from UCI repository

of machine learning databases [66] . 

In order to perform experimental analysis, one needs to generate a collection of granular structures from each data set.

Without loss of generality, we adopt a neighborhood relation to a collection. As we recall that the neighborhood relation R

on the universe is a relation matrix M(R ) = (r i j ) n ×n , where 

r i j = 

{
1 , d( x i , x j ) ≤ δ, 
0 , otherwise, 

where d is a certain distance [14,65] between x and y, δ is a nonnegative number. Let B ⊆AT be numerical attributes, the

neighborhood granules of objects x induced by B can be determined by 

N B (x ) = { x i ∈ U | d B (x, x i ) ≤ δ} , where δ varies from 0 to 0.5 with the step 0.0 0 05. Through granulating the data set with

this step, we can obtain 10 0 0 granular structures of a given data set. Through removing the duplicate granular structures,

we produce a set of different granular structures from each data set, which is outlined as Table 2 . These granular structures

from every data set are used in experimental analysis in the experiments. All experimental work was performed by a high-

performance computer (Inter(R) Xeon(R) CPU, 2.00 GHz (Double) and 16 GB memory) in this section. 

6.1. Convergence analysis 

Let us investigate and test the convergence of the proposed GGS algorithm with two dissimilarity measures d 1 and d 2 . 

In the experiment, we carried out 100 runs of the algorithm on the set of granular structures coming from each of the

nine data sets, respectively. In each run, the initial cluster prototypes of the GGS algorithm were randomly generated. The

convergence behavior of the algorithm is displayed in Fig. 6 . Here we show the 100 curves, where each curve refers to the

values of the objective function obtained in the successive iterations of the algorithm. 

It can be seen from Fig. 6 , that values of the objective function decrease over the progression of the algorithm. The main

progress is noted at the initial iterations and afterwards the method converges and does not result in further reduction of

the values of the objective function. This shows that the GGS algorithm is convergent, which can be used safely for grouping

granular structures in human granulation intelligence. 

6.2. Effectiveness analysis 

To evaluate the performance of a grouping result of the granular structures, two validity indices were proposed in

Section 5 , namely dispersion and approximation degree. In this section, we test the grouping performance of the GGS algo-

rithm. 

Firstly, we test the performance of the GGS algorithm using the index DIS on the nine data sets in Table 2 . The dispersion

index is used to measure the dispersion degree of the grouping result of granular structures. The lower the value of this

index on a grouping result, the better the clustering performance of this result. In this experimental analysis, we let the

numbers of clusters vary from 2 to 
√ 

n 1 . The obtained experimental results are shown in Fig. 7 . 
1 In the literature [58] , Yu argued that possible number of clusters often lies within the interval [2 , 
√ 

n ] , where n is the number of objects in the data 

set to be clustered. 
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Fig. 6. The values of objective function in against iterations with different initial cluster centers. 

 

 

 

 

 

 

 

 

 

 

 

 

It is easy to see from Fig. 7 that the DIS index consistently decreases as the number of clusters increases for the same

set of granular structures, which is able to quickly achieve a smaller value. This implies that the GGS algorithm can obtain

a better grouping result for a given number of clusters. 

In what follows, we consider another index APD for evaluating the performance of the GGS algorithm from a different

point of view. The approximation degree is employed to characterize the mean approximation degree of every clusters from

a grouping result. Like the DIS , if a grouping result is better, then the value of the APD index becomes smaller. The values

of the index APD are presented in Fig. 8 . 

From Fig. 8 , the values of the APD index tends to decrease as the number of clusters increases for the same set of granular

structures, which is also able to quickly achieve a smaller value. Like the DIS index, this means that the GGS algorithm can

obtain a better grouping result for a given number of clusters. However, this trend is not strictly monotonic. This is because

grouping the same granular structures into different number of clusters generates different grouping results, which may

have different positive regions for a given decision. 

Given the above two indices, the performance of the GGS algorithms induced by different dissimilarities can be compared

when dealing with the same number of clusters. If there exists a new dissimilarity measure between granular structures

such that the value of DIS index is much smaller than that being generated by other measures, then this dissimilarity

measure may lead to a better selection. 
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Fig. 7. Values of DIS index in against number of clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3. Scalability analysis 

The purpose of this experiment is to test the scalability of the GGS algorithm. 

We tested two types of scalability of the GGS algorithm on a family of granular structures. The first one is the scala-

bility against the number of granular structures for a given number of clusters, and the second is the scalability against

the number of clusters for a given number of granular structures. Fig. 9 shows the results of using the GGS algorithm to

group different numbers of granular structures into 5 clusters. Fig. 10 displays the results of using the GGS algorithm to the

obtained granular structures from each of the nine data sets into different numbers of clusters. In Fig. 10 , the numbers of

clusters also vary from 2 to 
√ 

n , where n is the number of different granular structures induced by a given data set with

the step of 0.0 0 05. The plots show the computational time of the GGS algorithm for every grouping task. 

Referring to Fig. 9 , one important observation is that the computing time of the GGS algorithm tends to increase linearly

as the number of granular structures increases. This observation is consistent with the linear time complexity of the GGS

algorithm. Of course, in some cases ( Fig. 9 (d) and (g)) grouping less granular structures into a given number of clusters

took more time than grouping more granular structures into the same number of clusters. This reason is that the former

clustering may take more iterations to converge than the latter one. In addition, as one of the important advantages of the

GGS algorithm, we also can see that the GGS algorithm is very efficient. For example, the computational time shown in

Fig. 9 (f) is less than 0.4 s on the data set Hayes–Roth, while the computational time as shown in Fig. 9 (i) is less than 0.22 s

on the data set Zoo. 
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Fig. 8. Values of APD index in against number of clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Fig. 10 , we observe that the computing time of the GGS algorithm tends to increase with the number of clusters

becoming larger. But this trend is not especially monotonic, as the grouping the same granular structures into different num-

ber of clusters may take different number iterations and it could take different com puting time to converge. In particular,

we see that the GGS algorithm is very efficient for various numbers of cluster. 

Finally, we also tested scalability of the GGS algorithm on a very large set of granular structures. An artificial data set

with 100 objects is employed for this experiment. We first randomly generate 50,0 0 0 granular structures on this artificial

data set. Then, we observe the scalability against the number of granular structures for three given numbers of clusters,

which are set as k = 3 , 5 , 7 , respectively. Fig. 11 shows the results of using the GGS algorithm to group different numbers of

granular structures into 3, 5 and 7 clusters, respectively. In this figure, the x −coordinate axis means the number of granular

structures, and the y −coordinate axis is the computational time of the GGS algorithm for every grouping task. 

It can be seen from Fig. 11 that the computational time of the GGS algorithm also tends to increase linearly with the

number of granular structures varying from 10,0 0 0 to 50,0 0 0. Another observation is that grouping the same number of

granular structures into a larger number of clusters took more computing time than grouping them into the lower number

of clusters. These two observations are consistent with the linear time complexity of the GGS algorithm. In particular, we

also can see that the GGS algorithm is very efficient for grouping a large-scale granular structure set. For example, the

GGS algorithm only spent almost 250 s when k = 7 . Hence, we can say that the GGS algorithm is an effective and efficient

approach to discover grouping property inherent in various granular structures. 

Summarizing the above experimental analysis, the obtained results tell us that the proposed GGS algorithm does not only

guarantee to be convergent but also becomes efficient in the determination of better clustering results. The DIS and APD are
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Fig. 9. Computing time of GGS algorithm in against numbers of granular structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

effective indices to evaluate the performance of grouping granular structures. It is worth noting that, the novel point of the

GGS algorithm is to propose a framework for discovering the grouping structure inherent in granular structures, which can

be used to simulate intelligent behavior of human’s quickly selecting information granularity. 

7. Conclusions 

From different granulation viewpoints, people can observe and analyze the same problem, which is called human gran-

ulation intelligence. For a given data set, through adopting different scales, a large number of granular structures can be

generated. However, people can group these granular structures and select some representative ones for problem solving.

This leads to an important problem of how to efficiently and effectively group a family of granular structures. As the main

motivation of this paper, we have done a tentative research from five steps. The first step has given a unified knowledge

representation for unifying various granular structures induced by different binary relations, which is helpful for establish-

ing a general framework for grouping granular structures. Based on this unified knowledge representation, in second step, a

so-called granular structure distance has been introduced to calculate the difference between two granular structures. Some

properties of this distance have been analyzed to show its rationality. In third step, a general framework (GGS) has been

developed to quickly group a set of granular structures. To evaluate the performance of a grouping result of granular struc-

tures, in fourth step, we have designed two indices: the dispersion DIS and the approximation degree APD . Finally, the fifth

step has employed nine real data sets and one artificial set of granular structures for testing the performance of the GGS
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Fig. 10. Computing time of GGS algorithm in against numbers of clusters. 

 

 

 

 

 

 

 

 

 

 

 

algorithm. The experimental results from convergence, effectiveness and scalability, have shown that the GGS algorithm is a

good solution, which can be safely used to discover the grouping structure inherent in granular structures. This framework

would provide a strategy for simulating intelligent behavior of human’s grouping granular structures. 

Within the broad area of grouping granular structures, this study delivers preliminary albeit interesting and promising re-

sults. In future works, there are two interesting and important issues to be looked at. One is how to effectively measure the

dissimilarity in-between granular structures. The other is how to design validity indices for evaluating the performance of

a grouping result of granular structures. The studies along this line would significantly promote the research of granulation

intelligence and information processing. 
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Fig. 11. Scalability of GGS algorithm against the number of granular structures with k = 3 , 5 and 7 . 
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