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Abstract This paper researches on potential relations of

dependency space, closure system and rough set theory,

and mainly focuses on solving some essential problems of

rough set theory based on dependency space and closure

system respectively. Firstly, we pretreat an information

system into a relatively simple derivative system, in which

dependency space and closure system are generated;

Secondly, by means of dependency space and closure

system separately we can solve some essential problems of

rough set theory, such as reducts, cores; Finally, we reveal

interior relations between dependency space and closure

system. Conclusions of this paper not only help to under-

stand rough set theory from the prospective of the depen-

dency space and closure system, but also provide a new

theoretical basis for data analysis and processing.

Keywords Rough set theory � Dependency space �
Closure system

1 Introduction

Rough set theory, proposed by Pawlak in the 1980s [10],

could effectively find principal or determinant factors from

data by reducing attributes, and thus achieve the simplifi-

cation and refinement of data. At the same time it expands

the classical set theory and demonstrates exclusive

advantages in dealing with inaccurate and incomplete

information [2, 5, 7–9, 15, 16, 21, 22, 25]. In recent years,

rough set theory has not only been continuously improved

in theoretical sphere, but also has been successfully applied

in many practical areas [1, 4, 12–14, 18, 20, 26], such as

machine learning, pattern recognition, decision analysis,

image processing, medical diagnostics, approximate rea-

soning, process control, knowledge discovery in databases,

expert systems and other fields.

Currently, study of rough set theory is mainly concen-

trated on its mathematical nature, measured property, and

relations with other data analysis tools. In the study of

relations between rough set theory and other data analysis

tools, there have been many important achievements such

as, relations and complementarities between rough set and

fuzzy set, Dempster-Shafer evidence [19, 23, 24]. In the

task of features extraction from data, the research on

relations between neural network and rough set is also an

interesting issue [11]. In the reference [17], which aims to

establish the relationship between FCA and rough set

theory. This paper introduces dependency space and clo-

sure system into rough set theory, and elaborates relations

of rough set, closure system and dependency space. Con-

clusions of this paper not only help to understand rough set

theory from the prospective of the dependency space and

the closure system, but also provide the basis for the further

combination of rough set theory, dependency space and

closure system.

The paper is structured as follows: in the flowing sec-

tion, we briefly recall fundamental notions and results

involved in dependency space, closure system and rough

set theory. Section 3 transforms information system into a
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relatively simple derivative system, in which the depen-

dency space and the closure system are generated. Sections

4 and 5 introduce dependency space and closure system

into rough set theory separately. Section 6 reveals relations

between dependency space and closure system. Conclusion

and discussion of the further work will close the paper in

Sect. 7.

2 Basic notions of dependency space, closure system

and rough set theory

This section only introduces basic notions, for more

extensive introductions refer to [3, 6].

Let S = (U, AT, V, f) be an information system, each

subset B � AT can determine a binary indiscernibility

relation

IndðBÞ ¼ fðx; yÞ 2 U � Uj8m 2 B; f ðx;mÞ ¼ f ðy;mÞg

Let B;C � AT ; if m 2 B and Ind(B) = Ind(B - m), we

say m is indispensable; Further if every m 2 B is indis-

pensable, we say B is independent. The set of all inde-

pendent sets of attributes is denoted as INDS. If C � B;C is

independent and Ind(B) = Ind(C), then C is called a reduct

of B. The set of all reducts of B is denoted as RedS(B). The

set of all indispensable attributes in B is called the core of B

denoted as CoreS(B). If IndðBÞ � IndðCÞ; we say B? C is

a function dependency of S.

Let A be a non-empty and finite set, K is a (union)

congruence relation on semilattice ðPðAÞ;[Þ (i.e., K is an

indiscernibility relation on PðAÞ and closed under union

operation), we call (A, K) a dependency space. In that case

PðAÞ denotes the power-set of A.

Proposition 1 Let S = (U, AT, V, f) be an information

system, we define a binary relation as:

KS ¼ fðB;CÞ 2 PðATÞ2jIndðBÞ ¼ IndðCÞg

Then DS = (AT, KS) is a dependency space of information

system S.

A closure system on a set P is a set of subsets which

contains P and is closed under intersections. Formally:

U � PðPÞ is a closure system if P 2 U and X � U)
T
X 2 U:

A closure operator u on P is a map assigning a closure

uX � P to each subset X � P under following conditions:

ð1Þ X � Y ) uX � uY ð2Þ X � uX

ð3Þ uuX ¼ uX

Proposition 2 If U is a closure system on P, then

uUðXÞ :¼
\
fA 2 UjX � Ag

is a closure operator on P. Conversely, the set

Uu :¼ fuðXÞjX � Pg

of all closures of a closure operator u is always a closure

system.

3 Dependency space and closure system

We can obtain a relatively simple derivative system JS

through pretreatment of an information system S. Actually,

JS is a special information system, and the corresponding

formal definition is shown as follows.

Definition 1 Let S = (U, AT, V, f) be an information

system with a 2 AT and x; y 2 U; by the following rule

ðui; ujÞISa, f ðui; aÞ ¼ f ðuj; aÞ

S can be transformed into a triple JS ¼ ð~U;AT ; ISÞ with
~U ¼ fðui; ujÞjui; uj 2 Ug; we say JS is the derivative sys-

tem of S.

Theorem 1 In JS ¼ ð~U;AT ; ISÞ; let A � ~U and B;B1;

B2 � AT ; we define two morphisms

uA ¼ fm 2 AT jðx; yÞISm; for allðx; yÞ 2 Ag

wB ¼ fðx; yÞ 2 ~Ujðx; yÞISm; for all m 2 Bg

then:

1. Ind(B) = w B

2. uw is a closure operator on AT

3. US
uw :¼ fuwBjB � ATg is a closure system on AT

4. DS
w = (AT, KS

w) is a dependency space of S with

K
w
S ¼ fðB1;B2Þ 2 PðATÞ2jwðB1Þ ¼ wðB2Þg

5. ðB1;B2Þ 2 K
w
S , IndðB1Þ ¼ IndðB2Þ

6. DS
w = DS

Proof (1) The statement follows immediately from Def-

inition 1. (2) It is sufficient to show that the conclusion

meets all conditions in the definition of a closure operator.

Since

uwB ¼)ufðx; yÞ 2 ~Ujðx; yÞISm; for all m 2 Bg
¼)ufðx; yÞ 2 ~UjB � uðx; yÞg
¼) \ fuðx; yÞjB � uðx; yÞg � B;

we have B � uwB: Taking into account uA and A1 � A2;

it’s obvious that uA2 � uA1: Since A � wuA (proved in a

similar fashion as B � uwB) and uA2 � uA1; we can

obtain uwuA � uA: In addition, because B � uwB; we

have uA � uwuA (replacing B by uA), and together with

uwuA � uA; uwuA ¼ uA holds, therefore, uwuwB ¼
uwB holds (replacing A by w B). Since uwB ¼

T

fuðx; yÞjB � uðx; yÞg and B � C; we have uwB � uwC:
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All together, uw is a closure operator on AT. (3) The

statement follows immediately from (2) and Proposition 2.

(4) The statement follows immediately from (1) and

Proposition 1. (5) The statement follows immediately from

(1) and (4). (6) The statement follows immediately from

(5) and Proposition 1.

Theorem 1 shows that we can generate a closure system

US
uw and a dependency space D

w
S ¼ ðAT ;Kw

S Þ respectively

based on JS.

4 Introducing dependency space into rough set theory

In this section, we introduce the dependency space in Sect.

3 to solve some essential problems in rough set theory,

such as reducts, cores, etc.

It is obvious that K
w
S is a binary indiscernibility relation

on PðATÞ: The relation K
w
S induces a partition denoted as

PðATÞ=R ¼ PðATÞ=K
w
S ¼ f½C�RjC 2 PðATÞg;

where ½C�R ¼ fB 2 PðATÞjðC;BÞ 2 K
w
S g:

Theorem 2 Let D
w
S ¼ ðAT ;Kw

S Þ be a dependency space,

B � AT; then

1. B 2 INDS iff9=C 2 ½B�R satisfies C � B:

2. C 2 RedSðBÞ iff9= ~C 2 ½B�R satisfies ~C � C; where

C 2 ½B�R:

Theorem 3 Let DS
w = (AT, KS

w) be a dependency space of

information system S with B;C � AT ; then

CoreSðBÞ ¼ \fCjC 2 ½B�R and C � Bg

Proof First, we assume that if a 2 CoreSðBÞ; then

there exists C 2 ½B�R with C � B satisfying a 62 C: From

ðB;CÞ 2 K
w
S by C 2 ½B�R; it follows that Ind(B) = Ind(C)

by Theorem 1. Thus from C � B� fag � B we can

deduce that Ind(B) = Ind(B - a), which contradicts to a 2
CoreSðBÞ: Hence if a 2 CoreSðBÞ and the element

C satisfying C 2 ½B�R and C � B; we have a 2 C:

Conversely, we assume that if a 2 \fCjC 2 ½B�R and C �
Bg; then Ind(B) = Ind(B - {a}) holds. According to

Theorem 2, there must exist minimum set D 2 RedSðBÞ:
Since Ind(B) = Ind(B - {a}), obviously, a 62 D holds.

And further together with D � B and D 2 ½B�R; we

can obtain a 62 \fCjC 2 ½B�R and C � Bg; which is a

contradiction, i.e. if a 2 \fCjC 2 ½B�R and C � Bg; then

Ind(B)= Ind(B - {a}) holds. Thus, we obtain a 2
CoreSðBÞ:

5 Introducing closure system into rough set theory

In this section, inspired by a previous study [6], we will use

the closure system in section 3 to solve some essential

problems in rough set theory, such as reducts, cores, etc.

Proposition 3 Let B;C � AT; then following statements

hold

1. C � uwB, wB � wC

2. B! C , C � uwB

3. IndðBÞ ¼ IndðCÞ , uwðBÞ ¼ uwðCÞ

Theorem 4 Let US
uw be a closure system on AT ;B;C �

AT ; then following statements are equivalent:

1. uwC � uwB (If B � C; then uwC ¼ uwB)

2. For any L 2 US
uw;B* L or C � L holds.

3. B ? C

Proof

(1) () (2). Firstly suppose (1) holds. For any L 2 US
uw;

if B* L; then (2) is true; For any L 2 US
uw; if B � L then

uwB � uwL ¼ L: Since uwC � uwB; we can obtain

uwC � L) C � L; hence (2) is true. Conversely,

suppose (2) holds. Obviously, that yields B�C)
\fL2US

uwjC� Lg�\fL2US
uwjB� Lg)uwC�uwB

by Proposition 2. Moreover, we can obtain B�C)
uwB�uwC from the certification process of Theorem

1, together with uwC�uwB; we obtain uwC¼uwB;

hence (1) is true.

(3) () (2). Firstly suppose (3) holds, thus we obtain

C � uwB by Proposition 3. For any L 2 US
uw; if B* L;

then (2) is true; For any L 2 US
uw; if B � L; then uwB �

uwL ¼ L; and further together with C � uwB; we get

C � L; therefore, (2) is true. Conversely, suppose (2)

holds. In particular, we have that B*uwB or C � uwB

holds for uwB: Since B � uwB(which denies B*uwB),

we obtain C � uwB: And further we can see from

Proposition 3 that B? C, therefore, (3) is true.

Theorem 5 If US
uw is a closure system on AT, then

1. INDS ¼ fB � AT j8a 2 B;B� fag � L and B* L; 9
L 2 US

uwg
2. CoreSðBÞ¼ fa2BjB�fag� L and B*L;9L2US

uwg

Proof (1) Let B � AT ; for any a 2 B; if there exists

L 2 US
uw satisfying B� fag � L and B* L; we can see
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from Theorem 4 that uwðBÞ 6¼ uwðB� fagÞ: And further

for any a 2 B; IndðBÞ 6¼ IndðB� fagÞ holds by Proposi-

tion 3, thus B 2 INDS is true. (2) Let B � AT and a 2 B; if

there exists L 2 US
uw satisfying B� fag � L and B* L; we

have uwðBÞ 6¼ uwðB� fagÞ by Theorem 4 , and thus

Ind(B)= Ind(B - {a}) by Proposition 3, then a 2
CoreSðBÞ is true.

Theorem 6 Let US
uw be a closure system on AT ;B;C �

AT ; then C 2 RedSðBÞiffC is the minimum-subset satisfying

the following condition

C \ B* LorB � L holds for any L 2 US
uw

Proof Let C 2 RedSðBÞ; if C is not the minimum-subset,

where C satisfies the condition, then there exists C1 � C;

and for any L 2 US
uw; there exists C1 \ B* L or B � L:

Since C1 � C � B; we can confirm C1\ B = C1, which

means that for any L 2 US; there is C1 * L or B � L; and

by Theorem 4, we obtain the statement uwC1 ¼ uwB; and

further we can deduce the formula Ind(B) = Ind(C1) from

Proposition 3. Since C 2 RedSðBÞ; we can confirm

Ind(B) = Ind(C), which, obviously contradicts with the

statement that C is a reduct of B. That is C is the minimum-

subset satisfying the condition. Conversely, we provide that

C is the minimum-subset, where C satisfies the condition.

If C *B; then C1 ¼ ðB \ CÞ � C and C1 \ B ¼ ðB \ CÞ \
B ¼ C \ B* L; it’s clearly that C1 \ B*L or B � L is true

for any L 2 US
uw; thus contradict with the rule that C is the

minimum-subset,where C satisfies the condition, hence we

can confirm C � B: We assume C 62 RedSðBÞ; and then

there is C1 � C � B with C1 2 RedSðBÞ: On account of

Ind(B) = Ind(C1), we can obtain uwC1 ¼ uwB by

Proposition 3 . It’s obvious that there exists C1 ¼ C1 \
B* L or B � L for any L 2 US

uw by Theorem 4. Thus

contradict that C is the minimum-set involved in AT, where

C satisfies the condition, hence C 2 RedSðBÞ:

6 Relations between closure system and dependency

space

This section will reveal some interior relations between

closure system US
uw and dependency space DS

w.

Theorem 7 Let US
uw be a closure system on AT, then

KðUS
uwÞ ¼ fðB;CÞj8L 2 US

uw; ððB � LÞ and

ðC � LÞÞ or ððB* LÞ and ðC * LÞÞg

is an indiscernibility relation on PðATÞ and closed under

union operation.

Proof Let ðB1;C1Þ 2 KðUS
uwÞ; ðB2;C2Þ 2 KðUS

uwÞ: Then

for any L 2 US
uw; we prove as follows: (a) If B1 � L and

B2 � L; then C1 � L and C2 � L hold, and thus C1 [ C2 �
L and B1 [ B2 � L; (b) If B1 � L and B2 * L; then we have

C1 � L and C2 * L; and thus C1 [ C2 * L and B1 [ B2 * L;

If B1 *L and B2 � L hold, we obtain C1 [ C2 * L and B1 [
B2 * L in the similar fashion; (c) If B1 * L and B2 * L hold,

then C1 * L and C2 * L; the further results are C1 [ C2 * L

and B1 [ B2 * L: All together we have ðB1 [ B2;C1 [ C2Þ
2 KðUS

uwÞ; hence KðUS
uwÞ is an indiscernibility relation on

PðATÞ and closed under union operation.

Theorem 8 Let S = (U, AT, V, f) be an information

system, then following statements hold

1. DðUS
uwÞ ¼ ðAT;KðUS

uwÞÞ is a dependency space of S

2. DðUS
uwÞ ¼ D

w
S ¼ DS

Proof Let ðB;CÞ 2 K
w
S ; it’s obvious that ðB;CÞ 2 K

w
S )

IndðBÞ ¼ IndðCÞ ) uwB ¼ uwC: For any L 2 US
uw; we

discuss in two parts: (a) If B � L; then C � uwC ¼
uwB � uwL ¼ L; and similarly B � L yielding from C �
L: (b) If B* L; then C � uwC ¼ uwB*uwL ¼ L and

similarly B* L yielding from C * L: All together we have

ðB;CÞ 2 KðUS
uwÞ: Conversely, suppose ðB;CÞ 2 KðUS

uwÞ
holds, since uwB 2 US

uw and B � uwB; we have C �
uwB; and thus uwC � uwuwB) uwC � uwB:uwB �
uwC can be proved for the same reason. Hence we con-

form uwB ¼ uwC: From Proposition 3 and Theorem 1, it

follows ðB;CÞ 2 K
w
S : Above all, we can obtain K

w
S ¼

KðUS
uwÞ; obviously, which implies DðUS

uwÞ ¼ D
w
S ; and

further we can obtain DðUS
uwÞ ¼ D

w
S ¼ DS by Theorem 1.

It’s easy to know by Theorem 8 that the dependency

space DðUS
uwÞ generated from the closure system US

uw is

equivalent to D
w
S :

7 Conclusion and further work

This paper is a new achievement in the relation among

dependency space, closure system and rough set theory, it

mainly provides new solutions to some essential problems

of rough set theory. This pater can be divided into the

following parts: Firstly, it generates a dependency space

and a closure system; second, it solves some essential

problems in rough set theory from two different views of

dependency space and closure system respectively; finally,

it reveals some interior relations between dependency
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space and closure system. Results will provide a new the-

oretical basis for analysis and processing of data as well as

helping people understands rough set theory in views of

dependency space and closure system. How to further

introduce these methods into rough set models possessing

special relations, such as the variable precision rough set

model, probabilistic rough set model, fuzzy rough set

model and random sets rough set model, will be our future

work.
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