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a b s t r a c t 

Clustering analysis is a fundamental technique in machine learning, which is also widely 

used in information granulation. Multiple clustering systems granulate a data set into mul- 

tiple granular structures. Therefore, clustering ensemble can serve as an important branch 

of multigranulation information fusion. Many approaches have been proposed to solve the 

clustering ensemble problem. This paper focuses on the direct approaches which involve 

two steps: finding cluster correspondence and utilizing a fusion strategy to produce a final 

result. The existing direct approaches mainly discuss the process of finding cluster corre- 

spondence, while the fusing process is simply done by voting. In this paper, we mainly 

focus on the fusing process and propose a Dempster-Shafer evidence theory-based clus- 

tering ensemble algorithm. The advantage of the algorithm is that the information of an 

object’s surrounding cluster structure is taken into consideration by using its neighbors to 

describe it. First, we find neighbors of each object and generate its label probability out- 

puts in every base partition. Second, these label probability outputs are integrated based 

on DS theory. Theoretically, our method is superior to other voting methods. Besides, sev- 

eral experiments show that the proposed algorithm is statistically better than seven other 

clustering ensemble methods. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Granular computing is efficient in designing intelligent systems [30] . As one of the three key issues (information granula-

tion, organization and causation) in granular computing [11,41,43,44] , information granulation is also regarded as one of the

fundamental features of human cognitive ability. The task of information granulation is to granulate a data set into granules

to obtain a granular structure. Many strategies of information granulation [13,24,28,29,42] have been proposed to meet dif-

ferent user demands, in which clustering analysis is a widely used strategy. Clustering analysis [40] is an interesting area in

machine learning, whose task is to find the structure of data through dividing a data set into clusters. Good clustering often

satisfies two requirements: one is that the objects share high similarity in the same cluster, the other is that the objects

share high dissimilarity in different clusters. A clustering algorithm is only suitable for a particular data distribution and a
� This is an extended version of the paper presented at the International Conference of Machine Learning and Cybernetics (ICMLC) 2015, Guangzhou, 

China. 
∗ Corresponding author. 

E-mail addresses: feijiangli@email.sxu.edu.cn (F. Li), jinchengqyh@126.com (Y. Qian), jietingw@163.com (J. Wang), ljy@sxu.edu.cn (J. Liang). 

http://dx.doi.org/10.1016/j.ins.2016.10.008 

0020-0255/© 2016 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.ins.2016.10.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2016.10.008&domain=pdf
mailto:feijiangli@email.sxu.edu.cn
mailto:jinchengqyh@126.com
mailto:jietingw@163.com
mailto:ljy@sxu.edu.cn
http://dx.doi.org/10.1016/j.ins.2016.10.008


390 F. Li et al. / Information Sciences 378 (2017) 389–409 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

particular data model. However, it is often hard to get data distribution and data model. Using a single clustering system to

realize information granulation is not always satisfactory. Therefore, clustering ensemble comes into being. This evolution

is similar to the development of multigranulation analysis [31–34] . Multigranulation analysis offers many new ideas for de-

signing clustering algorithms [23,36,48] . In turn, multiple clustering systems explore a data set from different viewpoints,

so that the data set can be granulated into multiple granular structures. Thus, integrating multiple clustering systems, the

so-called clustering ensemble, is an important branch of multigranulation information fusion. 

Clustering ensemble, which integrates multiple exploratory clustering results, has shown better performance than a 

single clustering system. Different from classifier ensemble, there is no training label in the clustering ensemble. The la-

bels assigned by a clustering result are just symbols without practical meaning, so the design of a clustering ensemble

method is much more difficult than that of a classifier ensemble method. Even so, many approaches [3–5,7–10,12,14,17–

19,26,37,38,45–47] have been proposed to handle clustering ensemble problem. Based on different information matrix the 

consensus function used, the clustering ensemble algorithms can be summarized into four types: feature-based methods

[26,38] , co-association-based methods [9,12,14,37,45] , graph-based methods [4,7,17–19,37] and direct methods [3,8,10,37,47] .

The feature-based methods treat the clustering ensemble problem as clustering for categorical data. The co-association-

based methods utilize the matrix of co-association frequency. The graph-based methods first build a graph, in which nodes

are objects or clusters and edges are their relationship, and then utilize a graph partition technique to generate the final

ensemble result. As for the direct methods, there are two steps: finding cluster correspondence and then utilizing a fusion

strategy to generate the final ensemble result. 

The direct methods are the most immediate and simplest approach, which are based on the major characteristic of the

labels of base partitions’ being merely symbols without any implication. Therefore, the direct methods mainly focus on

finding the cluster correspondence. They firstly re-label the base partitions to unify the system of labels, and then employ

a fusion strategy to generate the final partition. In fact, the fusion strategy has a direct effect on the final clustering result,

so it is as important as the correspondence-finding step in direct method. However, most direct methods oversimplify this

step by using voting. In other words, the reason for the poor performance of direct method may be the neglect of the fusion

strategy. If so, there is a lot of room to improve the performance of the direct method, which inspires our work here. 

Clustering analysis aims to place an object and its neighbors into the same cluster. In clustering ensemble, each base

clustering result attempts to express the underlying distribution of data. However, the voting strategy does not take this

essential relationship into account. If we introduce the neighbor information into each object, its surrounding underlying

distribution will be taken into consideration. We denote each object in the form of label probabilities rather than a certain

label. Thus, the integrated probabilities is a kind of ensemble with underlying structure. Since the label probability out-

puts are uncertain measures for each object, we introduce the Dempster-Shafer evidence theory to integrate these multiple

uncertain labels. 

Dempster-Shafer (DS) theory, also known as evidence theory, was firstly proposed by Dempster in 1967 in his book

A Mathematical Theory of Evidence [35] . As an uncertainty reasoning method, DS theory has been widely used in expert

system to handle risk assessment, information reliability evaluation, and uncertainty management. In addition, DS theory

has provided a simple method, the Dempster’s combination rule, to combine multiple evidences. Hence, its application is

extended to the information fusion area [2,6,22,25,39] . 

The reasons for recommending DS theory lie in its simplicity and suitability. As for the simplicity, the Dempster’s com-

bination rule in DS theory provides a natural way to combine the label probability outputs. The only needed work is to

construct the label probabilities, which are known as evidence or believe mass functions in DS theory. Because the essential

operation of Dempster’s combination rule is multiplication, a high combined believe mass will be given to the cluster which

get high believe masses from all experts. It intuitively meets the demands of clustering ensemble, so DS theory is suitable. 

In this study, we expect that the combination of neighbor information and DS theory can realize ensemble with under-

lying structure. To address this issue, one may consider the following four problems. 

(1) How to use neighbor information to denote the objects in each base clustering and how to find the neighbors of each

object in clustering ensemble? 

(2) How to utilize DS theory to combine base partitions? 

(3) Will the DS theory-based clustering ensemble algorithm get a better performance? 

(4) In direct methods, is the fusion strategy important? 

This paper is motivated by the above four problems. In this paper, we utilize a gray level image binaryzation technique

to find the neighbors of each object without parameter., we first explore the label distribution around a measured object

with its neighbor information, and then give its probabilities of belonging to every label. Then, the expression form of the

base partitions is changed into probabilities. To combine the base partitions in the form of probability, a DS theory-based

fusion strategy is proposed. This strategy takes the relationship between an object and its neighbors into consideration, so it

may be more suitable as a fusion strategy for a clustering ensemble method. Utilizing DS-based fusion strategy, we propose

a Dempster-Shafer evidence theory-based clustering ensemble algorithm (using DSCE for short) and show its performance

both in theory and experiments. Comparing DSCE with the existing direct methods and some other type methods, we can

conclude that the fusion strategy in direct methods is very important, that is, a suitable fusion strategy also can improve

the performance of a direct method. 
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Fig. 1. The framework of clustering ensemble. 

Table 1 

Clustering ensemble process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The rest of the paper is organized as follows. In Section 2 , we briefly describe the clustering ensemble problem, the

notations used in this paper, and a direct method which includes two methods of finding correspondence for different

situations and voting fusion strategy. In Section 3 , we discuss on how to find neighbors and the DS-based fusion strategy.

Then, DSCE and voting-based direct method is compared from theoretical perspective. The experimental analysis is reported

in Section 4 . Finally, we summarize this paper and list the future work in Section 5 . 

2. Related works 

Clustering ensemble aims to integrate multiple clustering results into a unified result, which is superior to each base

clustering result. As is shown in Fig. 1 , there are two major tasks in clustering ensemble: generating base clusterings and

designing consensus function. In this section, we list the notations used in the paper, introduce the method of generating

base clusterings, and describe the two phases of the direct methods: finding cluster correspondence and fusing clusterings. 

2.1. Notations 

Generally, notations in the clustering ensemble problem can be defined as follows. Let X = { x 1 , x 2 , · · · , x n } ∈ R d denote

original data sets with n objects and each object is represented by d attributes. Every clustering result is denoted as a label

vector π ∈ N 

n . The input of a clustering ensemble algorithm is a set of h base clustering results � = { π1 , π2 , · · · , πh } .
The number of meta-clusters in q th clustering can be denoted by K 

( q ) , then the q th clustering is expressed as π q =
{ c 1 , c 2 , · · · , c K (q ) } . The label of i th object partitioned by j th algorithm is denoted by π j 

x i 
. π = F ({ π1 , π2 , · · · , πh } ) indicates

a clustering ensembles problem which integrates h base partitions by F ( • ). F ( • ) is the consensus function employed in the

clustering ensembles method. Then, clustering ensemble process is formalized in Table 1 . 

2.2. Base weak partitions 

It has been proved that clustering ensemble is effective when base partitions have high diversity. Base partitions which

are generated by different clustering algorithms or different parameters of an algorithm are time-consuming and similar.

Unfortunately, these two characteristics go against the demands of the base partitions in clustering ensemble. There is no

strong requirement for the performance of base partitions, so weak partitions are more suitable. Although a weak partition

is slightly better than random partition, it is diverse and economical. Alexander [38] proposed a method called random

one-dimensional projection to generate different weak clustering results. This method firstly projects a d-dimensional data

set into one dimension, then generates a partition by k-means clustering algorithm [15] . The steps of random 1D projection

are shown in Algorithm 1 : 

Algorithm 1 Random 1D projection. 

1: generate a random d-dimensional vector u , s.t | u | = 1 

2: X ′ = X n ×d · u d×1 

3: πq ← k-means (X ′ ) 
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The characteristic of random 1D projection is that it is sensitive to both projection vector and initial centers in k-means,

which brings infinite settings of parameters. Run the algorithm several times, we will obtain a group of diverse base clus-

terings. In this paper, we apply this algorithm to generate base partitions. 

2.3. The direct methods 

2.3.1. Finding cluster correspondence 

Clustering analysis is a kind of unsupervised learning technology, so the correspondence between every meta-cluster of

different clustering results is unknown. Suppose that there are two partitions which are expressed as {1, 1, 2, 2, 3, 3} and

{2, 2, 3, 3, 1, 1}. It is obvious that the two partitions indicate the same result but they belong to different label systems.

Naturally, a solution to solve the clustering ensemble problem contains two steps: finding the correspondence between

every meta-cluster in different clustering systems and generating a final integrated partition through a fusion strategy. 

For different types of base partitions, the methods of finding cluster correspondence are different. Here, we consider the

following two types of base partitions: one is that the number of clusters in each base partition is equal to the number

of clusters in the target partition and the other is that at least one base partition has different number of clusters with

the target result. For the first type, Zhou [47] introduced the align process to find cluster correspondence based on the

assumption that similar clusters should share maximum overlapped objects. The align process selects a clustering randomly

as the baseline for the remaining clusterings to match with. For each pair of clusterings, this approach builds a K × K

overlap matrix, in which the clusters with the largest number of overlapped objects are re-labeled in the same way. When

there are two clusterings π1 and π2 , the align process is shown in Algorithm 2 . Correspondence between the clusters in

all clustering systems can be found by repeating this process. For the other type of base partitions, the method of finding

cluster correspondence in Meta-Clustering Algorithm (MCLA) [37] is efficient. It is based on clustering clusters to find cluster

correspondence. In MCLA, each cluster is treated as a hyperedge, and the weight is the similarity between each pair of

clusters, then an undirected meta-graph can be built. The cluster correspondence is found by partitioning the meta-graph

through a graph partitioning technique called METIS [20] . Suppose a base partitions set is � = { π1 , π2 , · · · , πh } , the method

of finding cluster correspondence in MCLA is shown in Algorithm 3 . We do not focus on the process of finding cluster

correspondence, so these two methods are directly employed in the proposed algorithm in Section 3 . 

Algorithm 2 Align process. 

1: for i = 1 to K do 

2: for j = 1 to K do 

3: OV ERLAP (i, j) = |{ x | π1 
x = i, π2 

x = j}| ; 
4: end for 

5: end for 

6: for k = 1 to K do 

7: (u (k ) , v (k )) = location (max (OV ERLAP )) 

8: OV ERLAP u (k ) ∗ = −1 

9: OV ERLAP ∗v (k ) = −1 

10: end for 

11: re-label π1 and π2 based on u, v 

Algorithm 3 Finding correspondence. 

1: C = 

∑ h 
q =1 K 

(q ) 

2: for i = 1 to C do 

3: for j = 1 to C do 

4: w (i, j) = 

c T 
i 

c j 

‖ c i ‖ 2 2 
+ ‖ c j ‖ 2 2 

−c T 
i 

c j 

5: end for 

6: end for 

7: W = MET IS(w ) 

8: re-label � based on W 

2.3.2. Fusion strategy 

After finding the correspondence of clusters between different partitions, the clustering ensemble problem can be trans-

formed into a qualitative information fusion problem. The most popular fusion strategy used in clustering ensemble is the

voting strategy, in which plurality voting, weighted voting and soft voting are three widely used techniques. For an object,

plurality voting chooses the label which has the most votes as the final output. When two labels have equal votes, either
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Fig. 2. Voting and ensemble with neighbors ( • represents an object). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of them can be treated as the final result. The ensemble result obtained by plurality voting can be deemed as the parti-

tion which shares the most information with the base clusterings. Weighted voting considers that the quality of each base

clustering is different, so the contribution of each base clustering to the final output would not be equal. High confidence

believe should be given to high quality clustering result in weighted voting. Without ground truth, measuring the quality of

a base clustering result is challenging. Most methods use stability, i.e., the average similarity between one clustering result

with others, to substitute the measurement of quality in clustering ensemble [21] . Soft voting is applied when the output of

an object in each base partition is label probabilities. The integrated output of soft voting is the average label probabilities

of the base partitions. In the methods MCLA [37] , Constr.Combin [3] and Unconstr.Combin [3] , the combined output is for-

malized as the probabilities of an object’s belonging to each cluster, and the final label is assigned to the cluster which has

the highest probability. 

The common practice in the second step of a direct method is simply utilizing an universal qualitative fusion strategy. It

is interesting to design a particular clustering ensemble fusion strategy which takes the characteristics of clustering analysis

into consideration. 

3. Dempster-Shafer evidence theory-based clustering ensemble algorithm (DSCE) 

Our approach contains the following four steps: (1) finding neighbors of each object, (2) finding cluster correspondence,

(3) defining mass functions of each base partition and (4) applying Dempster’s combination rule. How to find neighbors

of each object will be described in Section 3.1 . The second step in our algorithm is corresponding to the first step of the

direct methods. Here, we use the existing methods which are described in Section 2.3.1 . The last two steps correspond to

the second step of the direct methods together, and they constitute a novel fusion strategy which is called DS-based fusion

strategy. In Section 3.2 , DS-based fusion strategy will be introduced in detail. In Section 3.3 , the framework of DSCE will be

given. Finally, we theoretically analyze the ensemble performance of DSCE in Section 3.4 . 

3.1. Finding neighbors 

In clustering analysis, according to the demand that similar objects should be placed in the same cluster, an object

and its neighbors often have same label. Then, using the labels of neighbors to estimate the label distribution around a

measured object is an efficient approach. The label distribution can offer the confidence level of a measured object’s degree

of belonging to each label. The integration of label probabilities involves the underlying structure of a data set, which is

very different from voting (see Fig. 2 ). So it may be more suitable to handle the clustering ensemble problem. To estimate

the label distribution, neighbors of each object should be found first. 

The distance between two objects is difficult to measure without the feature information, which makes finding neighbors

a difficult problem in clustering ensemble. As a compromise, similarity between two objects can be represented by the

frequency of their being assigned to the same cluster. Concretely, the similarity between two objects x i and x j is defined

as: 

p i j = 

1 

h 

h ∑ 

q =1 

I 

(
π q 

x i 
, π q 

x j 

)
, (1)

where 

I 

(
π q 

x i 
, π q 

x j 

)
= 

{ 

1 , π q 
x i 

= π q 
x j 

;
0 , π q 

x i 
� = π q 

x j 
. 

Computing the similarity between each pair of objects forms a pairwise similarity matrix S n × n , in which each element

can reflect an object’s probability of being neighbor with another object. Intuitively, the higher the similarity between two

objects is, the stronger their tendency of being neighbor is. To explicitly define the neighbor, a threshold should be estab-

lished to segment this pairwise similarity matrix into a two-value matrix so that the values which are greater than the
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Table 2 

Finding neighbors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

threshold will be defined as neighbor and marked as 1, while the remaining elements will be marked as 0. To establish

the threshold, Otsu’s algorithm [27] , a widely used technique in selecting a threshold from a gray level image, is taken into

consideration. It is shown as follows. 

Let matrix M n × n indicate a gray level image with L gray levels [1, 2, ���, L ], in which the i th level has n i pixels corre-

spondingly. Then, the total number of pixels equals to the sum of the number of every pixel, which can be expressed as

n 2 = n 1 + n 2 + · · · + n L . The probability distribution of the gray-level histogram can be normalized as: 

p i = 

n i 

n 

2 
, p i > 0 , 

L ∑ 

i =1 

p i = 1 . (2) 

Suppose that the pixels are separated into two classes by a threshold t , then the probability of pixels’ being below t level,

the mean level of below threshold and the total mean level, can be calculated by: 

ω(t) = 

t ∑ 

i =1 

p i , μ(t) = 

t ∑ 

i =1 

ip i , μL = 

L ∑ 

i =1 

ip i . (3) 

After searching all levels in the original gray level image, an optimal threshold t ∗ can be achieved by: 

t ∗ = arg max 1 ≤t≤L 

(
(μL · ω(t) − μ(t)) 2 

ω(t) · (1 − ω(t)) 

)
. (4) 

Otsu’s algorithm selects an optimal threshold automatically and stably with simple procedure, and it is widely applied

not only in gray level images but also in histograms. 

Matrix S has information of histogram and can be treated as a gray level image, so Otsu’s algorithm is suitable to select

an optimal threshold from S . With a threshold t ∗ selected by Otsu’s algorithm, one can obtain a new matrix S ′ from similarity

matrix S through: 

p ′ i j = 

{
1 , p i j > t ∗;
0 , p i j ≤ t ∗. 

(5) 

The steps of finding neighbors based on a set of partitions � is shown in Table 2 . In matrix S ′ , x j is a neighbor of x i 
when p ′ 

i j 
= 1 , so matrix S ′ indicates the neighbors of each object clearly. 

3.2. DS-based fusion strategy 

Having obtained the neighbors of each object, it is easy to estimate the label distribution around each object, which

transforms the traditional absolute label into label probabilities. The label probability output is uncertain measures of an

object. As an effective and widely used uncertainty reasoning method, Dempster-Shafer evidence theory is employed as a

fusion strategy to handle the uncertain ensemble problem. 

In Dempster-Shafer evidence theory, there are two important functions: the believe mass function and the Dempster’s

combination rule. How to define mass functions and how to use Dempster’s combination rule will be introduced in this

section. These two steps are processed after finding cluster correspondence, thus, the mass functions generated from ev-

ery base partition will share an unified standard and the Dempster’s combination rule will combine corresponding mass

functions. 

3.2.1. Defining mass function 

As an uncertainty reasoning method, DS theory gives degree of belief by mass function at first. Mass function is confi-

dence evaluation of an expert to a problem. The definition of mass function is described as follows. 
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Definition 1 (Mass Function) . Let H © be an proposition space and P( H ©) is all subsets of H ©. Mass function m is a projection

P( H ©) → [0 , 1] which satisfies 

(1) m (∅ ) = 0 , 

(2) 
∑ 

A ⊆P( H ©) 

m (A ) = 1 . 

In a mass function, m ( A ) indicates the confidence evaluation of an expert. In the clustering ensemble problem, each base

clustering is treated as an expert’s evaluation and A is a subset of labels. 

Every clustering result gives each object an absolute label. It is arbitrary to trust the obtained label of a measured object.

In general, the prediction of an expert to a problem is uncertain. Through the labels of an object’s neighbors, one can

compute the object’s possibility within each cluster. What calls for special attention is the situation that the belief mass

of a label is zero, which will happen when the label does not exist in neighbors of an object. A problem arising from the

situation is that the belief mass of this label will always be zero when we use Dempster’s combination rule to combine

with other partitions in the next step. That is to say, the label of an object may be determined by one clustering result, and

if the prediction of the object in this clustering result happens to be wrong, there is no chance to correct the final result.

To avoid this, we divide the measured object into K objects which belong to different labels to guarantee that the neighbors

of the object contain all labels. Then the neighbors of an object will include the real neighbors and the fictitious divided

objects but without the measured object itself. For object x i , the K mass functions based on partition π q are defined as: 

m (π q 
x i 
) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

m 

(
π q 

x i 
, 1 

)
= 

| X q 
i 1 
| +1 ∑ n 

j=1 p 
′ 
i j 
+ K−1 

, 

m 

(
π q 

x i 
, 2 

)
= 

| X q 
i 2 
| +1 ∑ n 

j=1 p 
′ 
i j 
+ K−1 

, 

. . . 

m 

(
π q 

x i 
, K 

)
= 

| X q 
iK 
| +1 ∑ n 

j=1 p 
′ 
i j 
+ K−1 

, 

(6)

where X 
q 

ik 
= { x j | p ′ i j 

= 1 , πq 
x j 

= k, j = 1 , 2 , · · · , n, j � = i } , and | a | is the cardinality of set a . In the fraction, the denominator

indicates the numbers of an object’s neighbors and the numerator counts the number of the object’s neighbors with label k .

Obviously, the object in a partition π q has K mass functions whose sum is equal to 1, so this construction method satisfies

the definition of mass function. 

3.2.2. Applying Dempster’s combination rule 

Undoubtedly, different experts will provide different mass functions. Dempster’s combination rule is used to combine

evaluations of different experts in DS theory. Dempster’s combination rule is defined as: 

Theorem 1 (Dempster’s combination rule) . Suppose m 1 and m 2 are two mass functions of H ©, m is a mass function combining

m 1 and m 2 , which satisfies 

(1) m (∅ ) = 0 , 

(2) m (A ) = 

1 

N 12 

∑ 

E 
⋂ 

F = A 
m 1 (E) m 2 (F ) , A � = ∅ and A, E, F ⊆ P( H ©) ;

where N 12 = 

∑ 

E 
⋂ 

F � = ∅ m 1 (E) m 2 (F ) . 

Theorem 1 gives a frame to combine evaluations of two experts. The consequence is still mass functions which can be

treated as an evaluation of an expert as well. Thus, when there are more than two experts, one can use Dempster’s com-

bination rule repeatedly to generate a final judgement. In clustering ensemble, for object x i , using Dempster’s combination

rule to combine two mass functions which are generated by partitions πp and πq can be formulated as: 

m (π p 
x i 
) � m (π q 

x i 
) = m (π pq 

x i 
) 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

m 

(
π pq 

x i 
, 1 

)
= 

(
m (π p 

x i 
, 1) m (π q 

x i 
, 1) 

)
/ N pq , 

m 

(
π pq 

x i 
, 2 

)
= 

(
m (π p 

x i 
, 2) m (π q 

x i 
, 2) 

)
/ N pq , 

. . . 

m 

(
π pq 

x i 
, K 

)
= 

(
m (π p 

x i 
, K) m (π q 

x i 
, K) 

)
/ N pq , 

(7)

where N pq = 

∑ K 
k =1 m (π p 

x i 
, k ) m (πq 

x i 
, k ) . 

For an object, one can give a group of mass functions based on all partitions, and then use Dempster’s combination rule

h − 1 times (as Formula ( 8 )) to obtain integrated mass functions, in which the cluster with the maximum value of belief

mass is the cluster that the object should be assigned to. (((
1 2 

)
3 

)
h −1 

)
h 
m (πx i ) = m (πx i 

) � m (πx i 
) � m (πx i 

) � · · · m (πx i 
) � m (πx i 

) . (8) 
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Table 3 

Mass functions of all partitions. 

m (π1 
x ) m (π2 

x ) ��� m (π h 
x ) 

m (π1 
x , 1) m (π2 

x , 1) ��� m (π h 
x , 1) 

m (π1 
x , 2) m (π2 

x , 2) ��� m (π h 
x , 2) 

� �
. . . �

m (π1 
x , K) m (π2 

x , K) ��� m (π h 
x , K) 

 

 

 

 

 

 

 

3.3. The framework of the algorithm 

The frame of Dempster-Shafer theory-based clustering ensembles algorithm is shown in Algorithm 4 . 

Algorithm 4 Dempster-Shafer theory-based clustering ensembles algorithm (DSCE). 

INPUT: cluster results set �, number of clusters K

OUTPUT: final label vector π
STEP.1 Find neighbors 

1: call for process in Table 2 

STEP.2 Find cluster correspondence 

1: call for process in Section 2.3 

STEP.3 Create mass functions 

1: for q = 1 to h do 

2: for i = 1 to n do 

3: create mass functions use Formula (6) 

4: end for 

5: end for 

STEP.4 Apply Dempster’s combination rule 

1: for i = 1 to n do 

2: m (πx i ) = m (π1 
x i 
) 

3: for q = 2 to h do 

4: m (πx i ) = m (πx i ) � m (πq 
x i 
) 

5: end for 

6: end for 

STEP.5 Label 

1: for i = 1 to n do 

2: π(x i ) = arg max k =1 , 2 , ···K m (πx i ) 

3: end for 

Finding cluster correspondence process in Step 2 can also be operated at beginning of the algorithm when the base

partitions have a fixed K which equals to the true class number. In this situation, process of finding neighbors will generate

the same result no matter which step goes first. 

3.4. Analysis of DSCE 

We conduct the analysis after the mass functions of object x in each base partition have been obtained as Table 3 . Then,

the integration of the h mass functions can be calculated as Formula (9) : 

m (πx ) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

m (πx , 1) = 

∏ h 
p=1 m (π p 

x , 1) / N �, 

m ( πx , 2) = 

∏ h 
p=1 m (π p 

x , 2) / N �, 

. . . 

m ( πx , K) = 

∏ h 
p=1 m (π p 

x , K) / N �, 

(9) 

where N � = 

∑ K 
k =1 

∏ h 
p=1 m (π p 

x , k ) . 

Without loss of generality, we assume that �h = { π1 , π2 , . . . , πh } is a finite set with h predictions. These predictions

are correct with probability { g 1 k , g 2 k , . . . g hk } for object x in cluster k . For the other (K − 1) clusters in prediction p , the

probabilities of incorrectness are equivalent, which is (1 − g pk ) / (K − 1) . It can be deemed that the objects around x have

the same prediction probability as x . Then, for x in prediction πp ∈ �h , the mass functions which are defined by neighbors

can be calculated as: 

m 

(
π p 

x 

)
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

m 

(
π p 

x , 1 

)
= (1 − g pk ) / (K − 1) , 

. . . 

m 

(
π p 

x , k 
)

= g pk , 

. . . 

m 

(
π p 

x , K 

)
= (1 − g pk ) / (K − 1) , 

(10) 
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Based on Formula (9) , the combined mass functions is: 

m (π�h 
x ) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

m (π�h 
x , 1) = 

∏ h 
p=1 ( 

1 −g pk 

K−1 
) /N �h 

, 

. . . 

m ( π�h 
x , k ) = 

∏ h 
p=1 (g pk ) /N �h 

, 

. . . 

m ( π�h 
x , K) = 

∏ h 
p=1 ( 

1 −g pk 

K−1 
) /N �h 

, 

(11)

where N �h 
= 

∏ h 
p=1 

(
1 −g pk 

)
(K−1) h −1 

+ 

∏ h 
p=1 g pk . 

We define g k as the accuracy of the worst prediction, i.e., g k = min { g 1 k , g 2 k , . . . g hk } . For the convenience of calculation, we

weaken the accuracy of every prediction in �h to the worst situation. It can be deemed as constructing a weak prediction

set �′ 
h 

based on �h . Specifically, the predictions in �′ 
h 

are correct with probability { g ′ 
1 k 

, g ′ 
2 k 

, . . . g ′ 
hk 

} , in which g ′ 
1 k 

= g ′ 
2 k 

=
. . . = g ′ 

hk 
= g k . Thus, the conservative combined mass function can be calculated as: 

m 

(
π

�′ 
h 

x 

)
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

m (π
�′ 

h 
x , 1) = ((1 − g k ) / (K − 1)) h /N �′ 

h 
, 

. . . 

m (π
�′ 

h 
x , k ) = g h 

k 
/N �′ 

h 
, 

. . . 

m (π
�′ 

h 
x , K) = ((1 − g k ) / (K − 1)) h /N �′ 

h 
, 

(12)

where N �′ 
h 

= g h 
k 

+ (1 − g k ) 
h / (K − 1) h −1 . 

Note that, the value of m (π
�′ 

h 
x , k ) is smaller than that of m (π

�h 
x , k ) , while the mass values of the other (k − 1) clusters

in m (π
�′ 

h 
x ) are larger than that in m (π

�h 
x ) . Therefore, we can use Formula (12) to describe the worst situation of Formula

(11) . 

In addition, the ensemble prediction of x is the cluster assigned with the largest mass function, i.e. 

π(x ) = arg max k =1 , 2 , ···K m ( πx , k ) . 

Then the result of DSCE is correct if 

g h 
k 

g h 
k 
+ (1 − g k ) h / (K − 1) h −1 

> 

( (1 − g k ) / (K − 1) ) 
h 

g h 
k 
+ (1 − g k ) h / (K − 1) h −1 

. (13)

Through the above inequality (13) , we obtain that g k > 1/ K . That is to say, if each base partition is better than random

partition, DSCE will generate a satisfactory solution. 

Next, we will simply compare the performance of DSCE with that of the simple voting when K = 2 in theory. 

Denote the accuracy probability of each base clustering as g , when K = 2 , the probability of accuracy by voting is 

p c _ V (g) = 

h ∑ 

i = 
 h +1 
2 � 

h ! 

i !(h − i )! 
g i (1 − g) h −i , (14)

where h is the number of base clusterings. 

Based on Formula (12) , when K = 2 , the accuracy probability by using DS-based fusion strategy is 

p c _ D (g) = 

g h 

g h + (1 − g) h 
. (15)

If p c _ D (g) > p c _ V (g) , we could deem that DSCE is better than voting. Based on the following property, it can be concluded

that if each base partition is better than random partition, i.e., g > 1/2, the accuracy of DS-based fusion strategy is higher

than that of voting. 

Property 1. If 1/2 < g < 1 and integer h > 1, then. 

p c _ D (g) > p c _ V (g) . (16)

Proof. Based on Formula (14) and Formula (15) , 

p c _ D (g) > p c _ V (g) 

⇔ 

g h 

g h + (1 − g) h 
> 

h ∑ 

i = 
 h +1 
2 � 

h ! 

i !(h − i )! 
g i (1 − g) h −i 
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⇔ 1 > 

⎛ 

⎝ 

h ∑ 

i = 
 h +1 
2 � 

h ! 

i !(h − i )! 
g i (1 − g) h −i 

⎞ 

⎠ 

(
g h + (1 − g) h 

g h 

)

⇔ 1 > 

h ∑ 

i = 
 h +1 
2 � 

h ! 

i !(h − i )! 
g i (1 − g) h −i + 

⎛ 

⎝ 

h ∑ 

i = 
 h +1 
2 � 

h ! 

i !(h − i )! 
g i (1 − g) h −i 

⎞ 

⎠ 

(
1 − g 

g 

)h 

⇔ 1 −
h ∑ 

i = 
 h +1 
2 � 

h ! 

i !(h − i )! 
g i (1 − g) h −i > 

h ∑ 

i = 
 h +1 
2 � 

h ! 

i !(h − i )! 
g i −h (1 − g) 2 h −i . (17) 

Note that, the probability of accuracy by voting is the summation of the second half in the binomial expansion. Actually,

the left part in the inequality (17) is the summation of the first half in the binomial expansion. Then, the left part of the

inequality (17) has the following characteristic. 

When h is odd number, we have 

1 −
h ∑ 

i = 
 h +1 
2 � 

h ! 

i !(h − i )! 
g i (1 − g) h −i = 

h ∑ 

i = 
 h +1 
2 � 

h ! 

i !(h − i )! 
(1 − g) i g h −i . 

When h is even number, we have 

1 −
h ∑ 

i = 
 h +1 
2 � 

h ! 

i !(h − i )! 
g i (1 − g) h −i 

= 

h ∑ 

i = 
 h +1 
2 � 

h ! 

i !(h − i )! 
(1 − g) i g h −i + 

h ! 

(h/ 2)!(h/ 2)! 
(1 − g) 

h 
2 g 

h 
2 

> 

h ∑ 

i = 
 h +1 
2 � 

h ! 

i !(h − i )! 
(1 − g) i g h −i . 

Then, the inequality (17) is equivalent to 

h ∑ 

i = 
 h +1 
2 � 

h ! 

i !(h − i )! 
(1 − g) i g h −i > 

h ∑ 

i = 
 h +1 
2 � 

h ! 

i !(h − i )! 
g i −h (1 − g) 2 h −i . (18) 

For each i , if (1 − g) i g h −i > g i −h (1 − g) 2 h −i , Formula (17) holds. Then, we have the following derivation: 

(1 − g) i g h −i > g i −h (1 − g) 2 h −i 

⇔ 

g h −i ( 1 − g ) 
i 

g i −h ( 1 − g ) 
(2 h −i ) 

> 1 

⇔ 

(
g 

1 − g 

)2(h −i ) 

> 1 . (19) 

If g > 1/2 and i < h , we can obtain inequality (19) . Based on the above derivation, the property holds. 

This completes the proof. �

This property guarantees that DSCE is more suitable than voting in the application of the binary clustering ensemble

problem. 

To further illustrate the superiority of DS-based fusion strategy, we will visualize the ensemble accuracy curve of the

DS-based fusion strategy and that of voting when K = 2 and K = 3 . 

When K = 3 , the ensemble accuracy by voting is: 

p c _ V (g) = 

h ∑ 

i = 
 h +1 
2 � 

h ! 

i !(h − i )! 
g i (1 − g) h −i + 


 h +1 
2 �−1 ∑ 

i = 
 h +1 
3 � 

i −1 ∑ 

j= h −2 i +1 

h ! 

i ! j!(h − i − j)! 
g i 
(

1 − g 

2 

)h −i 

, 

where h is the number of partitions and g is the accuracy of each base partition. 

For DS-based fusion strategy, the accuracy is: 

p c _ D (g) = 

g h 

g h + (1 − g) h / 2 

h −1 
. 
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Fig. 3. Accuracy curve of voting and DSCE. 

Table 4 

Data sets. 

ID Data set Size Attribute Class 

1 Iris 150 4 3 

2 Wine Recognition data 178 13 3 

3 Seeds Data Set 210 7 3 

4 User Knowledge Modeling 258 5 3 

5 Protein Localization Sites 272 7 3 

6 Johns Hopkins University Ionosphere database 351 34 2 

7 Wisconsin Diagnostic Breast Cancer (WDBC) 569 30 2 

8 Pima Indians Diabetes Database 768 8 2 

9 Mammographic Mass Data 830 5 2 

10 Vehicle Silhouettes 846 18 4 

11 Statlog (Landsat Satellite) Data Set-test 1004 36 7 

12 Waveform Database Generator 21 50 0 0 21 3 

13 Waveform Database Generator 40 50 0 0 40 3 

14 Blocks Classification 5473 10 5 

15 Pen Digits 10,992 16 10 

16 Letter Recognition Data Set 20,0 0 0 16 26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 shows the accuracy curves of voting and DSCE in terms of accuracy of base partitions when K = 2 (left) and K = 3

(right). It is obvious that when g > 1/ K , the curve of DSCE is higher than that of voting. It can be concluded that DS-based

fusion strategy is better than voting only if the base partitions are better than a random partition. 

So far, we have made it clear that if the accuracy of base partitions is slightly better than random partition, DSCE will

generate a satisfactory decision which is better than that of voting when K = 2 and K = 3 . The superiority of DSCE may owe

to the neighbor information of objects used in the definition of mass functions and the multiplication rule of DS theory. 

4. Experimental analysis 

4.1. Data sets 

Sixteen data sets from UCI Machine Learning Repository [1] are used to evaluate the performance of DSCE. The detailed

information of these data sets are shown in Table 4 . They are all numerical data sets. The size of these data sets ranges

from 150 to 20,0 0 0 and the number of attribute ranges from 4 to 40. In Table 4 , the data sets are sorted by the number of

objects. 

4.2. Experimental setting 

Experiments are set up to compare DSCE with CSPA, HGPA, MCLA, Voting, Weighted Voting (W-V), Selected Voting (S-V)

and Selected Weighted Voting (S-W-V). The first three methods are graph-based methods and their codes are available at

http://strehl.com/ . CSPA is also a co-association-based method. MCLA is also a direct approach. After finding correspondence

between each pair clusters, MCLA votes meta-clusters to generate the final clustering. The remaining methods are direct

methods which are based on the same method of finding cluster correspondence. Their difference lies in the different voting

techniques. Voting method utilizes the plurality voting strategy. W-V computes the weight for each base partition based on

the average NMI [37] value, and votes base partitions with weights. S-V votes the base partitions whose weights are bigger

http://strehl.com/
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Table 5 

Overlap table of U and U’. 

U \ U ′ U ′ 1 U ′ 2 ��� U ′ K Sums 

U 1 n 11 n 12 ��� n 1 K b 1 
U 2 n 21 n 22 ��� n 2 K b 2 

� � �
. . . � �

U K n K 1 n K 2 ��� n KK b K 
Sums b ′ 1 b ′ 2 ��� b ′ K n 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

than a threshold, which is set as the average weight in the experiment. S-W-V votes the selected partitions with weights. In

experiment, DSCE has the same approach to finding cluster correspondence with Voting, W-V, S-V, and S-W-V. By comparing

DSCE with Voting, W-V, S-V, S-W-V, we expect to find whether utilizing DS-based fusion strategy in the direct methods is

suitable or not. The comparison between DSCE and the seven other methods will show whether DSCE is superior to other

methods. 

Accuracy (AC) [26] and Adjusted Rand Index (ARI) [16] are employed to evaluate the performance of DSCE and the seven

other algorithms. These two indices evaluate the similarity between two clustering results. Suppose U = { U 1 , U 2 , · · · , U K }
indicates the clustering result and U 

′ = { U 

′ 
1 
, U 

′ 
2 
, · · · , U 

′ 
K 
} is the true label. Table 5 shows the overlap matrix of U and U 

′ , in

which n ij is the overlapped objects of U i and U 

′ 
j 
, b i is the number of objects in cluster U i and b ′ 

i 
is the number of objects in

cluster U 

′ 
i 
. 

AC can be defined as: 

AC = 

K ∑ 

i =1 

max j=1 , 2 , ... ,K n i j 

n 

. (20) 

ARI is defined as: 

ARI = 

r 0 − r 3 
1 
2 
(r 1 + r 2 ) − r 3 

, (21) 

where 

r 0 = 

K ∑ 

i =1 

K ∑ 

j=1 

(
n i j 

2 

)
, r 1 = 

K ∑ 

i =1 

(
b i 
2 

)
, r 2 = 

K ∑ 

j=1 

(
b ′ 

j 

2 

)
, r 3 = 

2 r 1 r 2 
n (n − 1) 

. 

The experiments contain two parts: base partitions with fixed K, which is equal to the true class number, and base

partitions with random K, which is selected from 2: 
√ 

n randomly. In the first part, for DSCE, Voting, W-V, S-V and S-W-

V, the approach to finding correspondence is Algorithm 2 . In the second part, these five algorithms use method in MCLA

( Algorithm 3 ) to find cluster correspondence. Other experiment settings are as follows: (1) Random 1D projection algorithm

is used to generate base partitions. (2) The size of the base clusterings h is set as 10 and 20 in fixed K experiment, and set

as 50 in random K experiment. (3) To eliminate randomness in the experiment, we run each method 50 times to obtain an

average value and standard deviation. 

4.3. Experimental results 

Experimental results are shown from Tables 6–11 . Tables 6 and 7 are results of AC and ARI when there are ten base 10

partitions with fixed K, respectively. Tables 8 and 9 are results of AC and ARI when there are 20 base partitions with fixed

K, respectively. Tables 10 and 11 are results based on 50 weak partitions with random K. The maximum value for each data

set is underlined and printed in bold type, while the second maximum value is printed in bold type. The last row in each

table is the average rank of the algorithms on each data set. 

From Tables 6–11 , it is easy to find that DSCE is the method with the largest number of bold index, which manifests

that DSCE is competent to integrate base partitions with both fixed K and random K. In detail, the average rank of DSCE

ranks first in every circumstance, which declares DSCE is high-efficient. From Tables 10 and 11 , it can be found that the

graph-based methods (CSPA, HGPA and MCLA) are much better than the other direct methods except DSCE, which means

that DSCE improves the direct methods by utilizing an efficient fusion strategy. 

To show the evaluation results in the above tables more clearly, Figs. 4–6 visualize a statistical value of AC and ARI.

This statistical value is the difference between the number of times that a method performs better than the others and

the number of times it performs worse than the others. The better and worse are calculated at 95% confidence level. Let

[ L ( i , a , d ) , U ( i , a , d ) ] be the 95% confidence interval of index i ∈ { AC , ARI }, in which the values of index i are obtained by running

algorithm a ∈ A (A is the set of the 8 clustering ensemble algorithms in this paper) n ( n = 50 in the experiment) times on
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Table 6 

Index of AC with fixed K when h = 10 . 

CSPA HGPA MCLA Voting W-V S-V S-W-V DSCE 

1 0 .8280 ± 0.0276 0 .5533 ± 0.0834 0.8653 ± 0.0128 0 .8493 ± 0.0153 0 .8507 ± 0.0209 0 .7560 ± 0.1648 0 .7253 ± 0.2262 0 .8627 ± 0.0138 

2 0.7393 ± 0.0176 0 .5809 ± 0.0914 0 .7112 ± 0.0050 0 .7124 ± 0.0259 0 .6899 ± 0.0279 0 .6652 ± 0.0361 0 .6247 ± 0.1263 0 .7191 ± 0.0191 

3 0 .8343 ± 0.0114 0 .5857 ± 0.1726 0 .8410 ± 0.0120 0 .8352 ± 0.0080 0 .8257 ± 0.0170 0 .7190 ± 0.1376 0 .7048 ± 0.1254 0.8457 ± 0.0072 

4 0 .6674 ± 0.0069 0 .6628 ± 0.0 0 0 0 0 .7256 ± 0.0215 0 .7233 ± 0.0245 0 .7171 ± 0.0346 0 .7008 ± 0.0364 0 .7124 ± 0.0544 0.7264 ± 0.0364 

5 0 .7537 ± 0.0225 0 .5971 ± 0.0955 0 .7596 ± 0.0252 0 .7603 ± 0.0204 0 .7559 ± 0.0278 0 .6993 ± 0.0365 0 .7154 ± 0.0465 0.7838 ± 0.0416 

6 0.6883 ± 0.0025 0 .6410 ± 0.0 0 0 0 0 .6872 ± 0.0037 0 .6 84 9 ± 0.0025 0 .6866 ± 0.0040 0 .6701 ± 0.0065 0 .6798 ± 0.0069 0 .6872 ± 0.0024 

7 0 .7209 ± 0.0390 0 .6274 ± 0.0 0 0 0 0.8538 ± 0.0 0 08 0 .8510 ± 0.0034 0 .8496 ± 0.0042 0 .8394 ± 0.0064 0 .7989 ± 0.0959 0 .8524 ± 0.0018 

8 0 .6805 ± 0.0024 0 .6510 ± 0.0 0 0 0 0 .6919 ± 0.0054 0 .6901 ± 0.0081 0 .6919 ± 0.0061 0 .6901 ± 0.0143 0 .6862 ± 0.0113 0.6927 ± 0.0048 

9 0 .7892 ± 0.0047 0 .5145 ± 0.0 0 0 0 0 .7995 ± 0.0023 0.7998 ± 0.0010 0 .7990 ± 0.0010 0 .7872 ± 0.0212 0 .7867 ± 0.0212 0.7998 ± 0.0010 

10 0 .3991 ± 0.0191 0 .2589 ± 0.0 0 0 0 0.4189 ± 0.0251 0 .3671 ± 0.0429 0 .3792 ± 0.0426 0 .3629 ± 0.0564 0 .3962 ± 0.0355 0 .4035 ± 0.0264 

11 0 .6305 ± 0.0080 0 .5697 ± 0.0491 0.6601 ± 0.0161 0 .5998 ± 0.0505 0 .5980 ± 0.0578 0 .5857 ± 0.0769 0 .6120 ± 0.0534 0 .6592 ± 0.0160 

12 0 .3849 ± 0.0218 0 .3510 ± 0.0084 0 .3784 ± 0.0153 0 .4173 ± 0.0209 0 .4335 ± 0.0274 0 .4411 ± 0.0144 0.4583 ± 0.0317 0 .3929 ± 0.0237 

13 0 .3597 ± 0.0090 0 .3498 ± 0.0087 0 .3618 ± 0.0130 0 .3704 ± 0.0263 0 .3829 ± 0.0392 0 .3914 ± 0.0431 0.4091 ± 0.0511 0 .3731 ± 0.0335 

14 0 .8977 ± 0.0 0 0 0 0 .8977 ± 0.0 0 0 0 0 .8977 ± 0.0 0 0 0 0 .8990 ± 0.0 0 07 0 .8988 ± 0.0 0 08 0 .8988 ± 0.0 0 07 0 .8985 ± 0.0 0 07 0.8997 ± 0.0 0 05 

15 0 .2366 ± 0.0097 0 .2004 ± 0.0160 0 .2379 ± 0.0149 0 .2411 ± 0.0144 0 .2401 ± 0.0133 0 .2381 ± 0.0164 0 .1865 ± 0.0255 0.2457 ± 0.0064 

16 0 .6933 ± 0.0301 0 .1125 ± 0.0 0 0 0 0 .7375 ± 0.0481 0.7411 ± 0.0302 0 .7350 ± 0.0375 0 .6741 ± 0.0479 0 .6018 ± 0.1154 0 .7393 ± 0.0044 

rank 4 .9375 7 .875 3 .1875 3 .375 3 .9375 5 .3125 5 .4375 1 .9375 
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Table 7 

Index of ARI with fixed K when h = 10 . 

CSPA HGPA MCLA Voting W-V S-V S-W-V DSCE 

1 0 .5868 ± 0.0566 0 .1831 ± 0.1299 0.6614 ± 0.0289 0 .6277 ± 0.0333 0 .6285 ± 0.0472 0 .4759 ± 0.2615 0 .4545 ± 0.2787 0 .6575 ± 0.0282 

2 0.4221 ± 0.0192 0 .1941 ± 0.1255 0 .3765 ± 0.0076 0 .3957 ± 0.0449 0 .3663 ± 0.0474 0 .3302 ± 0.0518 0 .2793 ± 0.1562 0 .3955 ± 0.0407 

3 0 .5838 ± 0.0242 0 .2612 ± 0.2353 0 .5945 ± 0.0216 0 .5819 ± 0.0178 0 .5651 ± 0.0351 0 .4075 ± 0.2076 0 .3853 ± 0.1887 0.6044 ± 0.0142 

4 0 .0741 ± 0.0222 0 .0272 ± 0.0160 0 .1542 ± 0.0348 0 .1492 ± 0.0387 0 .1344 ± 0.0590 0 .0874 ± 0.0650 0 .1096 ± 0.0952 0.1620 ± 0.0441 

5 0 .3726 ± 0.0414 0 .0897 ± 0.1373 0 .4582 ± 0.0476 0 .4459 ± 0.0491 0 .4219 ± 0.0604 0 .2921 ± 0.0232 0 .3402 ± 0.0672 0.4881 ± 0.0954 

6 0.1396 ± 0.0038 −0 .0026 ± 0.0000 0 .1379 ± 0.0056 0 .1344 ± 0.0037 0 .1370 ± 0.0060 0 .1134 ± 0.0088 0 .1271 ± 0.0099 0 .1378 ± 0.0036 

7 0 .1987 ± 0.0698 −0 .0016 ± 0.0000 0.4904 ± 0.0023 0 .4821 ± 0.0099 0 .4780 ± 0.0124 0 .4485 ± 0.0184 0 .3644 ± 0.2040 0 .4862 ± 0.0052 

8 0 .1293 ± 0.0034 −0 .0012 ± 0.0000 0 .1446 ± 0.0080 0 .1417 ± 0.0112 0 .1448 ± 0.0093 0 .1425 ± 0.0214 0 .1351 ± 0.0165 0.1456 ± 0.0072 

9 0 .3337 ± 0.0109 −0 .0012 ± 0.0000 0 .3581 ± 0.0056 0.3587 ± 0.0024 0 .3569 ± 0.0024 0 .3306 ± 0.0464 0 .3295 ± 0.0466 0.3587 ± 0.0024 

10 0 .0807 ± 0.0088 −0 .0035 ± 0.0000 0.0934 ± 0.0265 0 .0593 ± 0.0333 0 .0683 ± 0.0356 0 .0537 ± 0.0373 0 .0770 ± 0.0303 0 .0879 ± 0.0126 

11 0 .2691 ± 0.0098 0 .2106 ± 0.0518 0 .3180 ± 0.0209 0 .2329 ± 0.0586 0 .2245 ± 0.0516 0 .2290 ± 0.0779 0 .2506 ± 0.0737 0.3308 ± 0.0361 

12 0 .0115 ± 0.0066 0 .0 0 09 ± 0.0011 0 .0081 ± 0.0044 0 .0265 ± 0.0124 0 .0390 ± 0.0204 0 .0436 ± 0.0187 0.0640 ± 0.0370 0 .0127 ± 0.0070 

13 0 .0029 ± 0.0024 0 .0 0 08 ± 0.0010 0 .0034 ± 0.0028 0 .0070 ± 0.0088 0 .0137 ± 0.0174 0 .0194 ± 0.0228 0.0322 ± 0.0395 0 .0087 ± 0.0152 

14 0 .0011 ± 0.0003 0 .0044 ± 0.0008 −0 .0010 ± 0.0002 0 .0156 ± 0.0131 0 .0193 ± 0.0200 0 .0146 ± 0.0434 −0 .0012 ± 0.0061 0.0206 ± 0.0175 

15 0 .1305 ± 0.0057 0 .0981 ± 0.0083 0 .1289 ± 0.0090 0 .1324 ± 0.0073 0 .1331 ± 0.0075 0 .1298 ± 0.0098 0 .0694 ± 0.0178 0.1343 ± 0.0026 

16 0 .5175 ± 0.0323 0 .0 0 0 0 ± 0.0 0 0 0 0 .5758 ± 0.0421 0 .5847 ± 0.0340 0 .5776 ± 0.0273 0 .5271 ± 0.0489 0 .4358 ± 0.1216 0.5966 ± 0.0016 

rank 4 .7500 7 .7500 3 .3125 3 .6563 3 .7500 5 .2500 5 .6250 1 .9063 
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Table 8 

Index of AC with fixed K when h = 20 . 

CSPA HGPA MCLA Voting W-V S-V S-W-V DSCE 

1 0 .8133 ± 0.0208 0 .5567 ± 0.0510 0.8560 ± 0.0064 0 .8420 ± 0.0290 0 .8280 ± 0.0589 0 .7453 ± 0.0666 0 .7213 ± 0.1183 0 .8533 ± 0.0089 

2 0.7416 ± 0.0038 0 .5562 ± 0.0 0 0 0 0 .7096 ± 0.0023 0 .7056 ± 0.0025 0 .7006 ± 0.0018 0 .6 84 8 ± 0.0056 0 .6837 ± 0.0047 0 .7118 ± 0.0020 

3 0 .8390 ± 0.0035 0 .5619 ± 0.0 0 0 0 0.8448 ± 0.0036 0 .8295 ± 0.0027 0 .8271 ± 0.0898 0 .7714 ± 0.0895 0 .7681 ± 0.0897 0 .8410 ± 0.0027 

4 0 .6771 ± 0.0042 0 .6690 ± 0.0 0 0 0 0 .7182 ± 0.0094 0 .7217 ± 0.0101 0 .7178 ± 0.0094 0 .7043 ± 0.0185 0 .6984 ± 0.0162 0.7271 ± 0.0111 

5 0 .7665 ± 0.0063 0 .5827 ± 0.0445 0 .7713 ± 0.0151 0 .7673 ± 0.0183 0 .7632 ± 0.0195 0 .7107 ± 0.0572 0 .7188 ± 0.0556 0.7820 ± 0.0172 

6 0 .6877 ± 0.0080 0 .6410 ± 0.0976 0 .6875 ± 0.0090 0 .6869 ± 0.0132 0 .6872 ± 0.0165 0 .6863 ± 0.0261 0 .6866 ± 0.0280 0.6883 ± 0.0119 

7 0 .7529 ± 0.0173 0 .6274 ± 0.0592 0.8540 ± 0.0066 0 .8511 ± 0.0879 0 .8501 ± 0.0784 0 .8404 ± 0.0194 0 .8406 ± 0.0352 0 .8522 ± 0.0071 

8 0 .6799 ± 0.0195 0 .6510 ± 0.0196 0 .6915 ± 0.0186 0 .6911 ± 0.0285 0 .6900 ± 0.0307 0 .6 84 9 ± 0.0400 0 .6 84 8 ± 0.0411 0.6918 ± 0.0250 

9 0 .7893 ± 0.0134 0 .5145 ± 0.0 0 0 0 0 .7967 ± 0.0033 0 .7970 ± 0.0234 0 .7700 ± 0.0309 0 .7583 ± 0.0452 0 .7589 ± 0.0642 0.7978 ± 0.0100 

10 0 .4067 ± 0.0193 0 .2589 ± 0.0744 0.4317 ± 0.0027 0 .4152 ± 0.0128 0 .4116 ± 0.0205 0 .3766 ± 0.0032 0 .3719 ± 0.0060 0 .4251 ± 0.0038 

11 0 .6219 ± 0.0196 0 .5321 ± 0.0 0 0 0 0.6697 ± 0.0 0 06 0 .6058 ± 0.0022 0 .6028 ± 0.0026 0 .5873 ± 0.0016 0 .5677 ± 0.0020 0 .6600 ± 0.0019 

12 0 .3764 ± 0.0 0 0 0 0 .3532 ± 0.0 0 0 0 0 .3652 ± 0.0 0 0 0 0 .3586 ± 0.0 0 08 0 .3584 ± 0.0 0 09 0 .3970 ± 0.0 0 08 0.4005 ± 0.0008 0 .3722 ± 0.0 0 05 

13 0 .3559 ± 0.0200 0 .3470 ± 0.0033 0 .3577 ± 0.0123 0 .3646 ± 0.0110 0 .3648 ± 0.0092 0 .3770 ± 0.0102 0.3776 ± 0.0125 0 .3561 ± 0.0121 

14 0 .8977 ± 0.0126 0 .8977 ± 0.0050 0 .8977 ± 0.0110 0 .8991 ± 0.0112 0 .8990 ± 0.0071 0 .8988 ± 0.0265 0 .8990 ± 0.0231 0.8997 ± 0.0134 

15 0 .2339 ± 0.0057 0 .1983 ± 0.0059 0 .2405 ± 0.0131 0 .2460 ± 0.0090 0 .2442 ± 0.0089 0 .24 4 4 ± 0.0131 0 .1949 ± 0.0208 0.2477 ± 0.0021 

16 0 .6806 ± 0.0206 0 .1125 ± 0.0 0 0 0 0 .7334 ± 0.0128 0 .7364 ± 0.0154 0.7370 ± 0.0159 0 .7016 ± 0.0304 0 .5727 ± 0.0391 0 .7367 ± 0.0036 

rank 4 .8125 7 .8750 2 .9375 3 .3125 4 .2188 5 .2500 5 .6563 1 .9375 
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Table 9 

Index of ARI with fixed K when h = 20 . 

CSPA HGPA MCLA Voting W-V S-V S-W-V DSCE 

1 0 .5562 ± 0.0439 0 .1746 ± 0.0722 0.6457 ± 0.0123 0 .6118 ± 0.0706 0 .5877 ± 0.1195 0 .4225 ± 0.1301 0 .4017 ± 0.1772 0 .6393 ± 0.0183 

2 0.4358 ± 0.0271 0 .1583 ± 0.1047 0 .3740 ± 0.0040 0 .3731 ± 0.0100 0 .3700 ± 0.0160 0 .3564 ± 0.0067 0 .3530 ± 0.0094 0 .3850 ± 0.0245 

3 0 .5937 ± 0.0180 0 .2149 ± 0.1621 0.6032 ± 0.0175 0 .5743 ± 0.0212 0 .5716 ± 0.0288 0 .4914 ± 0.0377 0 .4852 ± 0.0404 0 .5974 ± 0.0216 

4 0 .0856 ± 0.0277 0 .0540 ± 0.0322 0 .1550 ± 0.0262 0 .1499 ± 0.0427 0 .1394 ± 0.0531 0 .0919 ± 0.0700 0 .1018 ± 0.0630 0.1560 ± 0.0628 

5 0 .3915 ± 0.0134 0 .0730 ± 0.0478 0 .4827 ± 0.0298 0 .4625 ± 0.0423 0 .4546 ± 0.0433 0 .3373 ± 0.0968 0 .3500 ± 0.1111 0.4973 ± 0.0329 

6 0 .1388 ± 0.0058 −0 .0026 ± 0.0000 0 .1383 ± 0.0036 0 .1374 ± 0.0037 0 .1378 ± 0.0027 0 .1366 ± 0.0083 0 .1370 ± 0.0069 0.1395 ± 0.0030 

7 0 .2560 ± 0.0395 −0 .0016 ± 0.0000 0.4909 ± 0.0016 0 .4826 ± 0.0065 0 .4795 ± 0.0077 0 .4515 ± 0.0046 0 .4520 ± 0.0059 0 .4857 ± 0.0057 

8 0 .1286 ± 0.0059 −0 .0012 ± 0.0000 0 .14 4 4 ± 0.0140 0 .1437 ± 0.0149 0 .1418 ± 0.0137 0 .1343 ± 0.0260 0 .1342 ± 0.0232 0.1448 ± 0.0167 

9 0 .3340 ± 0.0081 −0 .0012 ± 0.0000 0 .3515 ± 0.0086 0 .3521 ± 0.0065 0 .3199 ± 0.1125 0 .2949 ± 0.1163 0 .2963 ± 0.1169 0.3541 ± 0.0063 

10 0 .0842 ± 0.0076 −0 .0035 ± 0.0000 0.1077 ± 0.0023 0 .0949 ± 0.0155 0 .0906 ± 0.0276 0 .0560 ± 0.0327 0 .0641 ± 0.0374 0 .1035 ± 0.0135 

11 0 .2611 ± 0.0211 0 .1757 ± 0.0438 0 .3143 ± 0.0055 0 .2462 ± 0.0771 0 .2380 ± 0.0677 0 .2272 ± 0.0398 0 .2038 ± 0.0525 0.3246 ± 0.0211 

12 0 .0082 ± 0.0079 0 .0013 ± 0.0006 0 .0037 ± 0.0027 0 .0019 ± 0.0013 0 .0017 ± 0.0016 0 .0145 ± 0.0067 0.0150 ± 0.0077 0 .0050 ± 0.0035 

13 0 .0019 ± 0.0019 0 .0 0 03 ± 0.0 0 05 0 .0026 ± 0.0025 0 .0038 ± 0.0025 0 .0038 ± 0.0017 0 .0082 ± 0.0094 0.0084 ± 0.0068 0 .0022 ± 0.0026 

14 0 .0012 ± 0.0006 0 .0034 ± 0.0014 0 .0 0 05 ± 0.0018 0 .0039 ± 0.0105 0 .0116 ± 0.0268 0 .0100 ± 0.0331 0.0276 ± 0.0430 0 .0104 ± 0.0143 

15 0 .1304 ± 0.0051 0 .0928 ± 0.0070 0 .1312 ± 0.0053 0 .1384 ± 0.0037 0 .1386 ± 0.0033 0 .1403 ± 0.0052 0 .0605 ± 0.0151 0.1406 ± 0.0013 

16 0 .5124 ± 0.0247 0 .0 0 0 0 ± 0.0 0 0 0 0 .5967 ± 0.0167 0 .6063 ± 0.0217 0.6071 ± 0.0223 0 .5561 ± 0.0468 0 .3931 ± 0.0406 0 .6064 ± 0.0026 

rank 4 .8750 7 .8125 3 .0 0 0 0 3 .6563 4 .0313 5 .2500 5 .3750 2 .0 0 0 0 
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Table 10 

Index of AC with random K when h = 50 . 

CSPA HGPA MCLA Voting W-V S-V S-W-V DSCE 

1 0 .8143 ± 0.0 0 04 0 .8183 ± 0.0 0 03 0 .8080 ± 0.0 0 05 0 .8107 ± 0.0 0 05 0 .8057 ± 0.0 0 04 0 .6687 ± 0.0039 0 .5190 ± 0.0301 0.8250 ± 0.0 0 03 

2 0.6463 ± 0.0 0 02 0 .6236 ± 0.0 0 03 0 .6250 ± 0.0 0 0 0 0 .6292 ± 0.0 0 0 0 0 .6270 ± 0.0 0 0 0 0 .6028 ± 0.0 0 04 0 .5073 ± 0.0128 0 .6430 ± 0.0 0 02 

3 0 .8405 ± 0.0 0 01 0 .8390 ± 0.0 0 01 0 .8393 ± 0.0 0 01 0 .8393 ± 0.0 0 01 0 .8386 ± 0.0 0 01 0 .8112 ± 0.0 0 05 0 .6583 ± 0.0424 0.8424 ± 0.0 0 01 

4 0 .6698 ± 0.0 0 02 0 .6632 ± 0.0 0 0 0 0.6973 ± 0.0 0 03 0 .6746 ± 0.0 0 02 0 .6711 ± 0.0 0 01 0 .6628 ± 0.0 0 0 0 0 .6647 ± 0.0 0 01 0 .6760 ± 0.0 0 03 

5 0 .7614 ± 0.0 0 0 0 0 .7662 ± 0.0 0 01 0 .7619 ± 0.0 0 0 0 0 .7651 ± 0.0 0 0 0 0 .7653 ± 0.0 0 0 0 0 .7594 ± 0.0 0 01 0 .6511 ± 0.0136 0.7673 ± 0.0 0 0 0 

6 0 .6833 ± 0.0 0 0 0 0 .6776 ± 0.0 0 01 0 .6842 ± 0.0 0 01 0 .6843 ± 0.0 0 0 0 0 .6838 ± 0.0 0 0 0 0 .6799 ± 0.0 0 01 0 .6801 ± 0.0 0 01 0.6858 ± 0.0 0 0 0 

7 0 .8490 ± 0.0 0 0 0 0.8662 ± 0.0 0 01 0 .8540 ± 0.0 0 0 0 0 .8489 ± 0.0 0 0 0 0 .8489 ± 0.0 0 0 0 0 .8476 ± 0.0 0 04 0 .8463 ± 0.0 0 03 0 .8554 ± 0.0 0 0 0 

8 0 .6792 ± 0.0 0 0 0 0 .6758 ± 0.0 0 01 0 .6777 ± 0.0 0 0 0 0 .6756 ± 0.0 0 0 0 0 .6758 ± 0.0 0 0 0 0 .6753 ± 0.0 0 01 0 .6762 ± 0.0 0 01 0.6796 ± 0.0 0 0 0 

9 0 .7942 ± 0.0 0 0 0 0.8064 ± 0.0 0 0 0 0 .7948 ± 0.0 0 0 0 0 .7929 ± 0.0 0 0 0 0 .7931 ± 0.0 0 0 0 0 .7956 ± 0.0 0 0 0 0 .7975 ± 0.0 0 0 0 0 .7977 ± 0.0 0 0 0 

10 0 .3533 ± 0.0 0 0 0 0.3665 ± 0.0 0 01 0 .3541 ± 0.0 0 0 0 0 .3520 ± 0.0 0 0 0 0 .3524 ± 0.0 0 0 0 0 .3540 ± 0.0 0 02 0 .3468 ± 0.0 0 07 0 .3563 ± 0.0 0 01 

11 0 .6344 ± 0.0 0 01 0 .6242 ± 0.0 0 02 0.6505 ± 0.0 0 02 0 .6348 ± 0.0 0 01 0 .6362 ± 0.0 0 01 0 .6249 ± 0.0 0 09 0 .4657 ± 0.0120 0 .6497 ± 0.0 0 01 

12 0 .3935 ± 0.0015 0 .3646 ± 0.0 0 02 0 .3588 ± 0.0 0 01 0 .3585 ± 0.0 0 01 0 .3558 ± 0.0 0 01 0 .3884 ± 0.0 0 07 0.4222 ± 0.0029 0 .3675 ± 0.0 0 04 

13 0 .3628 ± 0.0 0 02 0 .3630 ± 0.0 0 01 0 .3553 ± 0.0 0 01 0 .3558 ± 0.0 0 01 0 .3545 ± 0.0 0 01 0 .3627 ± 0.0 0 01 0.3857 ± 0.0015 0 .3576 ± 0.0 0 01 

14 0 .8977 ± 0.0 0 0 0 0 .8977 ± 0.0 0 0 0 0 .8977 ± 0.0 0 0 0 0 .8977 ± 0.0 0 0 0 0 .8977 ± 0.0 0 0 0 0 .8977 ± 0.0 0 0 0 0 .8977 ± 0.0 0 0 0 0 .8977 ± 0.0 0 0 0 

15 0 .2422 ± 0.0073 0 .2033 ± 0.0154 0 .2635 ± 0.0170 0 .2658 ± 0.0176 0 .2657 ± 0.0174 0 .2646 ± 0.0140 0 .2350 ± 0.0139 0.2678 ± 0.0184 

16 0 .7132 ± 0.0228 0 .2715 ± 0.0726 0 .6917 ± 0.0576 0 .6862 ± 0.0573 0 .6894 ± 0.0602 0 .6836 ± 0.0566 0 .6409 ± 0.0804 0.7166 ± 0.0264 

rank 3 .8438 4 .5625 3 .9375 4 .7188 5 .0938 5 .8438 5 .9688 2 .0313 
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Table 11 

Index of ARI with random K when h = 50 . 

CSPA HGPA MCLA Voting W-V S-V S-W-V DSCE 

1 0 .5463 ± 0.0016 0 .5626 ± 0.0019 0 .5293 ± 0.0027 0 .5366 ± 0.0026 0 .5272 ± 0.0024 0 .3130 ± 0.0081 0 .1819 ± 0.0327 0.5761 ± 0.0015 

2 0 .3063 ± 0.0 0 03 0 .2845 ± 0.0 0 05 0 .2589 ± 0.0 0 02 0 .2755 ± 0.0 0 02 0 .2703 ± 0.0 0 02 0 .2224 ± 0.0011 0 .1203 ± 0.0162 0.3170 ± 0.0 0 06 

3 0 .5995 ± 0.0 0 03 0 .5905 ± 0.0 0 02 0 .5934 ± 0.0 0 02 0 .5948 ± 0.0 0 03 0 .5941 ± 0.0 0 03 0 .5482 ± 0.0019 0 .3845 ± 0.0597 0.6016 ± 0.0 0 03 

4 0 .0835 ± 0.0 0 04 0 .0691 ± 0.0 0 03 0.1285 ± 0.0 0 04 0 .0925 ± 0.0 0 03 0 .0878 ± 0.0 0 02 0 .0478 ± 0.0 0 03 0 .0367 ± 0.0019 0 .0878 ± 0.0 0 04 

5 0 .3740 ± 0.0 0 01 0.4250 ± 0.0 0 06 0 .3628 ± 0.0 0 01 0 .3733 ± 0.0 0 01 0 .3735 ± 0.0 0 01 0 .3736 ± 0.0 0 06 0 .2106 ± 0.0408 0 .3914 ± 0.0 0 02 

6 0 .1322 ± 0.0 0 0 0 0 .1240 ± 0.0 0 01 0 .1336 ± 0.0 0 01 0 .1338 ± 0.0 0 01 0 .1329 ± 0.0 0 01 0 .1274 ± 0.0 0 02 0 .1277 ± 0.0 0 02 0.1358 ± 0.0 0 01 

7 0 .4865 ± 0.0 0 02 0.5359 ± 0.0012 0 .5006 ± 0.0001 0 .4860 ± 0.0 0 02 0 .4863 ± 0.0 0 01 0 .4839 ± 0.0030 0 .4801 ± 0.0026 0 .5047 ± 0.0 0 03 

8 0 .1274 ± 0.0 0 0 0 0 .1227 ± 0.0 0 02 0 .1253 ± 0.0 0 0 0 0 .1223 ± 0.0 0 01 0 .1226 ± 0.0 0 0 0 0 .1224 ± 0.0 0 03 0 .1234 ± 0.0 0 02 0.1281 ± 0.0 0 01 

9 0 .3453 ± 0.0 0 0 0 0.3750 ± 0.0 0 02 0 .3468 ± 0.0 0 0 0 0 .3424 ± 0.0 0 01 0 .3428 ± 0.0 0 0 0 0 .3489 ± 0.0 0 02 0 .3535 ± 0.0 0 02 0 .3536 ± 0.0 0 01 

10 0 .0563 ± 0.0 0 0 0 0 .0576 ± 0.0 0 0 0 0 .0572 ± 0.0 0 0 0 0 .0560 ± 0.0 0 0 0 0 .0563 ± 0.0 0 0 0 0 .0550 ± 0.0 0 0 0 0 .0500 ± 0.0002 0.0598 ± 0.0 0 0 0 

11 0 .2701 ± 0.0 0 0 0 0 .2659 ± 0.0 0 02 0 .2858 ± 0.0 0 01 0 .2717 ± 0.0 0 0 0 0 .2728 ± 0.0 0 01 0.3076 ± 0.0027 0 .1603 ± 0.0136 0 .2878 ± 0.0 0 02 

12 0 .0183 ± 0.0 0 06 0 .0035 ± 0.0000 0 .0020 ± 0.0000 0 .0020 ± 0.0000 0 .0015 ± 0.0000 0 .0147 ± 0.0 0 02 0.0363 ± 0.0013 0 .0054 ± 0.0000 

13 0 .0034 ± 0.0000 0 .0033 ± 0.0000 0 .0017 ± 0.0000 0 .0018 ± 0.0000 0 .0015 ± 0.0000 0 .0034 ± 0.0000 0.0153 ± 0.0 0 03 0 .0023 ± 0.0000 

14 0 .0110 ± 0.0 0 0 0 0.0298 ± 0.0 0 04 0 .0159 ± 0.0 0 0 0 0 .0025 ± 0.0000 −0 .0 0 02 ± 0.0 0 0 0 −0 .0028 ± 0.0000 0 .0167 ± 0.0054 0 .0218 ± 0.0 0 01 

15 0 .1415 ± 0.0070 0 .0993 ± 0.0075 0 .1493 ± 0.0113 0 .1504 ± 0.0119 0 .1506 ± 0.0118 0 .1505 ± 0.0110 0 .1062 ± 0.0206 0.1509 ± 0.0084 

16 0 .5649 ± 0.0255 0 .1015 ± 0.0546 0 .5687 ± 0.0485 0 .5592 ± 0.0506 0 .5615 ± 0.0527 0 .5556 ± 0.0542 0 .4939 ± 0.0719 0.5945 ± 0.0261 

rank 3 .8125 4 .2500 4 .2813 5 .0938 5 .1875 5 .4688 6 .0 0 0 0 1 .9063 
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Fig. 4. Statistical performance when K is fixed and h = 10 . 

Fig. 5. Statistical performance when K is fixed and h = 20 . 

Fig. 6. Statistical performance when K is random and h = 50 . 

 

 

 

 

data set d ∈ D (D is the set of 16 data sets in this paper). L ( i , a , d ) and U ( i , a , d ) are calculated by: 

L (i,a,d) = μ(i,a,d) − 1 . 96 

σ(i,a,d) √ 

n 

, 

U (i,a,d) = μ(i,a,d) + 1 . 96 

σ(i,a,d) √ 

n 

, 

(22)

where μ( i , a , d ) and σ ( i , a , d ) indicate the average value and the standard deviation based on parameters ( i , a , d ) respectively.

The number of times that an algorithm performs better than others in the sense of index i ∈ { AC , ARI } is expressed as

B ( i , a ) : 

B (i,a ) = 

∑ 

d∈ D 

∑ 

a ∗∈ A,a ∗ � = a 
better (i,d) (a, a ∗) , (23)

where 

better (i,d) (a, a ∗) = 

{
1 , L (i,a,d) > U (i,a ∗,d) ;
0 , L (i,a,d) ≤ U (i,a ∗,d) . 
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In the same way, the number of times that an algorithm performs worse than others in the sense of index i ∈ { AC , ARI }

is defined as W ( i , a ) : 

W (i,a ) = 

∑ 

d∈ D 

∑ 

a ∗∈ A,a ∗ � = a 
worse (i,d) (a, a ∗) , (24) 

where 

worse (i,d) (a, a ∗) = 

{
1 , U (i,a,d) > L (i,a ∗,d) ;
0 , U (i,a,d) ≤ L (i,a ∗,d) . 

Statistical performance of clustering ensemble algorithm a ∈ A with respect to index i ∈ { AC , ARI } is computed by: 

(B − W ) (i,a ) = B (i,a ) − U (i,a ) . (25) 

Total statistical performance integrating indices AC and ARI of an algorithm a ∈ A is calculated by: 

(B − W ) a = 

∑ 

i ∈{ AC,ARI} 
(B (i,a ) − U (i,a ) ) . (26) 

This performance statistics assesses the average performance of an algorithm, which can avoid the possible situation

that an algorithm runs abnormally at one time [17] . Figs. 4–6 show this statistical value based on Tables 6–11 . As shown in

Figs. 4 and 5 , DSCE possesses the maximum value both in single index and total statistical performance when the K value

of the base partitions is fixed. When the K values of the base partitions are random, it is easy to see from Fig. 6 that DSCE

is significantly much better than the other seven clustering ensemble methods. In this experiment, DSCE, MCLA, Voting,

W-V, S-V and S-W-V share the same approach to finding cluster correspondence, which illustrates that the DS-based fusion

strategy is much better than voting on meta-cluster, voting, weighted voting, selected voting and selected weighted voting.

In Fig. 6 , without considering DSCE, the graph-based methods show better performance than the direct methods. As a direct

method, DSCE is much better than the three graph-based methods, which illustrates that an efficient fusion strategy can

make up for the shortage in finding cluster correspondence. Further, the experiment illustrates that the fusion strategy has

a great influence on the performance of a direct method. 

5. Conclusions 

Multiple clustering systems can granulate a data set into multiple granular structures. Thus, clustering ensemble is a

branch of multigranulation information fusion. Many clustering ensemble methods have been proposed. This paper focuses

on the direct methods. Considering that most of the direct methods only pay attention to the process of finding cluster cor-

respondence but neglect the fusion process, this paper has proposed a Dempster-Shafer-based clustering ensemble method

(DSCE) which mainly pays attention to the fusion process. The proposed algorithm contains four steps: (1) finding neighbors

of each object, (2) finding cluster correspondence, (3) defining mass functions and (4) employing Dempster’s combination

rule. 

The characteristics of clustering analysis indicate that an object and its neighbors are often in the same cluster. With the

neighbor information, it is easy to evaluate an object’s probability within each cluster, which is called label probabilities. The

benefit of using neighbors to describe the measured object is that the surrounding underlying structure is considered and

blind trust in the obtained label is avoided. The introduced DS-based fusion strategy aims at combining the base clustering

results with label probabilities after the correspondence is determined. Both theoretical analysis and experiments indicate

that this algorithm performs well. Thus, we can draw a conclusion that the fusion strategy in a direct method has a great

influence on the final result. 

In the future, DSCE could be improved from the following two aspects. (1) The process of finding neighbors in DSCE is

time-consuming, because it will take a lot time to construct the co-association matrix. How to improve the speed of finding

neighbors will be an interesting and challenging research in the future. (2) It is feasible to develop a method of finding

cluster correspondence based on neighbor information, which will make DSCE more systematic. 

In addition, there are many elements that can affect the performance of a clustering ensemble method, such as charac-

teristics of base partitions, expression of information matrix, fusion strategies, etc. This paper simply explores the influence

of fusion strategy in the direct methods. It is interesting to explore the influence of each listed element. This series of

work is also helpful to explain why integrating multiple clustering systems can generate a much better result than a single

clustering. 
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