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a b s t r a c t

In this paper, to study the spread of vector-borne diseases in human population, we build two

coupled models for human population and vector population respectively on bipartite net-

works. By taking approximate expression for the density of infective vectors, we reduce the

coupled models to a delayed SIS model describing the spread of diseases in human population.

For the delayed dynamic model, we analyze its dynamic behavior. The basic reproduction

number R0 is given. And based on the Lyapunov–LaSalle invariance principle, we prove the

global asymptotic stability of the disease-free equilibrium and the endemic equilibrium. Fi-

nally we carry out simulations to verify the conclusions and reveal the effect of the topology

structure of networks and the time delay on the transmission process. Our results show that

the basic reproduction number depends on the topology structure of bipartite networks and

the time delay. It is also pointed out that the time delay can reduce the basic reproduction

number. Furthermore, when the disease will disappear, the delay speeds up the disappearing

process; when disease will become endemic, the delay slows the disease spreading down and

reduces the density of infective humans.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Time delays are related to several periods in mathematical epidemiology, such as incubation period [1–3], maturation period

and infectious period [4], etc. Particularly, the incubation period is common in the spread of vector-borne diseases. Vector-borne

diseases of humans, for instance, malaria, yellow fever, and dengue fever, are transmitted via blood-suck arthropods called

vectors, such as mosquitoes, biting flies and bugs. Vectors typically become infected by disease agents while feeding on infective

humans, and then pass on the disease agents to susceptible humans. In the transmission process, there always is an incubation

period during which disease agents develop in vectors, and only after that time, the infected vectors become themselves infective.

For example, in malaria spread, mosquitoes become infected by malaria agents while biting infective humans, after 10 to 14 days

[5,6], they become infective and pass on malaria agents to susceptible humans, so that malaria is widespread.

In order to discover the effect of time delays on the spread of vector-borne diseases, Cooke [7] proposed a Susceptible-

Infected-Susceptible (SIS) model with an incubation period

y′(t) = by(t − T)[1 − y(t)] − cy(t),
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Fig. 1. A bipartite network with two kinds of nodes, subregions and humans, where n = 5, N = 6.
where y(t) is the density of infective human, the time delay T is the incubation period, b > 0 and c � 0. Subsequently, the model

was extended by Marcati and Pozio [8], Volz [9], Beretta et al. [10] , Jin and Ma [11], etc. By introducing incubation period, Aron

and May [12], Dye and Williams [13], Ruan et al. [14] and Martcheva and Prosper [15] modified Ross–Macdonald model [16]

which describes malaria transmission. Among these researches, Ruan et al. [14] have found that the incubation period could

reduce the basic reproduction number and the prevalence of infection. Martcheva and Prosper [15] have shown the delay can

lead to oscillations and chaos. These results are obtained based on the assumption that vectors and humans are fully mixed. While

in the spreading process of infectious diseases, real contact patterns take the form of networks. In networks, a node represents

individual and an edge is placed between two individuals if there is the possibility of transmission between them. In particular,

the contact patterns between humans and vectors caused by vector-borne diseases form bipartite networks where the nodes

belong to two mutually classes (human and vector) and the edges can only occur between two nodes in different classes.

Thus, in recent ten years, increasing attention and interest is paid to infectious diseases spread on complex networks which

display complex topological properties of networks [17,18], such as small-world phenomenon [19] and scale-free degree dis-

tributions [20,21], etc. All kinds of epidemic models, Susceptible-Infected-Susceptible (SIS) [22–24], Susceptible-Infected (SI)

[25,26] and Susceptible-Infected-Removed (SIR) [27–30], were proposed on homogeneous networks and heterogeneous net-

works and focused on the effect of topology characters of networks on diseases spread. In these models, no matter SIS, SI or SIR,

an interesting result is that: there exists a critical epidemic threshold λc > 0 for homogeneous networks and when the spreading

rate below λc, the epidemic will disappear; while the critical epidemic threshold may tend to zero for infinite heterogeneous

networks such as scale-free networks. This means that, for infinite heterogenous networks, an epidemic disease will outbreak

for any spreading rate. Even the size of a heterogeneous network is finite, the critical value is rather small compared with the

one in a homogeneous network with the same size. The great change in the behavior of the processes indicates that we should

take into account the topology character of networks in the propagation of epidemics.

The same is true for vector-borne diseases spread. Masuda and Konno [31] have analyzed a model describing malaria

spreading between humans and mosquitos on bipartite networks. The study has revealed that the epidemic threshold [23]

depends on the degree distributions of humans and mosquitoes and it will disappear if either of the second-order moments of

the two degree distributions diverges. However, capturing the degree of each mosquito is impracticable. Considering human–

human and human–mosquito infection, SIS models have been proposed [32–34]. In [33,34], the heterogeneity is induced by the

heterogeneous connectivity among different persons, human and mosquitos are fully mixed.

The time delay and the structure of contact networks are important to the spread of vector-borne diseases. It is, therefore,

necessary to study the impacts of the time delay and the structure of networks on the transmission of the vector-borne diseases.

But, so far, there is no work focusing on vector-borne diseases spreading with a time delay on bipartite networks.

In this paper, in view of the habit of vectors limited dispersal from their breeding sites, we divide the whole region where

vector-borne disease occurs into several subregions. Then we construct bipartite networks (as illustrated in Fig. 1) where there

are two class nodes, humans and subregions, and the edge represents the relation that a human enters into a subregion and

is fully mixed with the vectors in the subregion. Two separate degree distributions may be reasonable to interpret the contact

patterns between humans and subregions in reality. On bipartite networks, we derive a delayed SIS model for vector-borne

diseases spread only caused by human–vector infection and following we analyze the dynamic behavior of the delayed model to

discover the effect of topology character of networks and the time delay on the propagation process.

The rest of this paper is organized as follows: In Section 2, we derive the SIS model with a time delay on bipartite networks.

The existence of equilibriums both of disease-free equilibrium and endemic equilibrium is discussed in Section 3. And we analyze

the global asymptotic stability of the equilibriums in Section 4. In Section 5, we perform simulations to illustrate the results.

Finally, we discuss in Section 6.

2. Model formulation

Assume � is the region where the transmission of vector-borne diseases occurs. It may be a city or a village, and so on. In the

region �, most vectors remain near their breeding sites, for example, mosquitoes tend to travel limited distances nearby their
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Table 1

Description of parameters.

Parameter Description

a Rate of biting on humans by a single vector

b The probability of infected bites on human that produce an infection

c The probability of infected bites on vector that produce an infection

γ The probability that an infective human is cured and become susceptible

δ The birth and death rate of vectors

τ The incubation period in vectors

N The total size of human population

V The vector size in each subregion

n The number of subregions
breeding sites [35], moist surfaces, rivers, forest and residential area. So it is reasonable to divide the region � into n domains

which correspond to breeding sites of vectors and are denoted by �1, �2, . . . , �n respectively.

Human moves between these subregions daily. When humans enter a subregion, the humans and vectors in the subregion are

homogeneous mixed. Thus, the contact patterns between humans and subregions form bipartite networks. Two separate degree

distributions q(k) and p(k) can be defined for subregions and humans respectively. As done in the study [36], to measure the

dependence of the epidemic threshold on the network size, the degree distribution is Poisson for the vectors. Here, we assume

each subregion has the same degree. While the displacement distribution of human mobility, for both long-range travels and

daily movements, approximately follows a power law distribution [37–40]. Then the degree distribution of humans p(k) may be

power law. Here it is treated as arbitrary degree distribution.

In order to describe the spread of vector-borne disease on networks, we make the following assumptions:

(H1) The total size N of human population is constant. Let Nk represent the number of humans who visit k subregions daily. In

addition, we divide human population into two discrete states, susceptible and infective. Let us denote by Xk(t) and Yk(t)

the number of susceptible and infective humans with degree k at time t respectively. Thus Nk = Np(k) = Xk(t) + Yk(t)(k =
1, 2, . . . , n) and N = N1 + N2 + ��� + Nn.

(H2) The birth and death rate for vectors are equal and denoted by δ, then the number of vectors in each subregion nearly

remains unchanged with time. We denote by V the size of vectors in each subregion. The vectors in each subregion are

divided into susceptible (i.e. healthy) vectors Vs and infective vectors Vi. So V = Vs(t) + Vi(t), where Vs(t)(Vi(t)) is the amount

of susceptible (infective) vectors at time t.

(H3) A susceptible human becomes infective when he(she) is bitten by an infective vector and a infective human is cured

and becomes a susceptible node with recovery rate γ . Let a be the rate of biting on humans by a single vector. Let b be

the probability of infected bites on human that produce an infection and the probability of infected bites on vector that

produce an infection is c.

(H4) A susceptible vector becomes infected upon biting an infective human and after its incubation period τ , it becomes

infective.

(H5) The life span of vectors is much shorter than the duration of infectiousness of humans, i.e. γ � δ.

(H6) The death and birth rate of vectors, δ, is assumed “large” and assure ac/(δeδτ ) � 1.

For the sake of clarity, we present the description of parameters in Table 1.

According to the above assumptions, in each subregion, vectors contact with N〈k〉/n humans and the number of bits on

humans per day per human is a/
N〈k〉

n . So we have the following SIS model for the human population

⎧⎪⎪⎨
⎪⎪⎩

dXk(t)

dt
= − ab

N〈k〉/n
kXk(t)Vi(t)+ γ Yk(t),

dYk(t)

dt
= ab

N〈k〉/n
kXk(t)Vi(t)− γ Yk(t),

k = 1, 2, . . . , n. (2.1)

In each subregion, vectors contact with N〈k〉/n humans including
∑

kkYk(t)/n infective humans at time t. So for the vector

population in each subregion, we have the following SI model⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dVs(t)

dt
= − ac

N〈k〉/n
e−δτ Vs(t − τ)

∑
k

kYk(t − τ)/n + δVi(t),

dVi(t)

dt
= ac

N〈k〉/n
e−δτ Vs(t − τ)

∑
k

kYk(t − τ)/n − δVi(t).

(2.2)

Let Sk(t) and Ik(t) be the relative density of the susceptible and infective nodes with degree k, then Sk(t) = Xk(t)/Nk and

Ik(t) = Yk(t)/Nk are the dimensionless human variables and satisfy Sk(t) + Ik(t) = 1. Let vs(t) = Vs(t)/V and vi(t) = Vi(t)/V be the

dimensionless vector variables, then vs(t) + v (t) = 1.
i
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Apply the dimensionless variables, the system (2.1) is reduced to the following equation

dIk(t)

dt
= ab

nV

N〈k〉k(1 − Ik(t))vi(t)− γ Ik(t), k = 1, 2, . . . , n. (2.3)

Furthermore, the dimensionless vector system is

dvi

dt
= ace−δτ (1 − vi(t − τ))

∑
k kp(k)Ik(t − τ)

〈k〉 − δvi(t). (2.4)

Associating (2.3) and (2.4), we have a coupled system⎧⎪⎪⎨
⎪⎪⎩

dIk(t)

dt
= ab

nV

N〈k〉k(1 − Ik(t))vi(t)− γ Ik(t), k = 1, 2, . . . , n,

dvi

dt
= ace−δτ (1 − vi(t − τ))

∑
k kp(k)Ik(t − τ)

〈k〉 − δvi(t).

(2.5)

For the coupled system (2.5), by the theory and methods used in researches [12,13], we will reduce its dimension. As usual, we

assume γ � δ in (H4), that means the life span of vectors is much shorter than the duration of infectiousness of humans. In fact,

it is common for malaria transmitted by mosquitoes. In this case, the dynamics of the vector population reaches its equilibration

much faster than that of human population (Aron andMay [12]). So disease among humans can be predicted without modeling

the vector explicitly. Namely, we can study the system (2.5) with vi(t) frozen at the following case (Dye and Williams [13])

dvi

dt
= 0. (2.6)

From (2.6), we have an approximate expression for vi(t), i.e.

vi(t) ≈
ace−δτ

∑
k kp(k)Ik(t−τ)

〈k〉
δ + ace−δτ

∑
k kp(k)Ik(t−τ)

〈k〉
.

By the assumption (H5), we know that ace−δτ � δ. So

vi(t) ≈ ace−δτ

δ

∑
k kp(k)Ik(t − τ)

〈k〉 . (2.7)

Substituting (2.7) into the system (2.5), the coupled system can be reduced to the following system

dIk

dt
= a2bc

δeδτ

nV

N〈k〉k(1 − Ik(t))

∑
k kp(k)Ik(t − τ)

〈k〉 − γ Ik(t), k = 1, 2, . . . , n. (2.8)

For analyze conveniently, we set s = γ t, then the model (2.8) can be written as

dIk

ds
= a2bcnV

γ δeδτ N〈k〉k(1 − Ik(s))

∑
k kp(k)Ik(s − τs)

〈k〉 − Ik(s), k = 1, 2, . . . , n.

To simplify the notations, s will be replaced by t and τ s by τ . So the above system becomes

dIk

dt
= a2bcnV

γ δeδτ N〈k〉k(1 − Ik(t))

∑
k kp(k)Ik(t − τ)

〈k〉 − Ik(t), k = 1, 2, . . . , n. (2.9)

Let β = a2bcnV

γ δeδτ N〈k〉 and �(I(t)) =
∑

k kp(k)Ik(t)〈k〉 , we can rewrite the system (2.9) as

dIk(t)

dt
= βk[1 − Ik(t)]�(I(t − τ))− Ik(t), k = 1, 2, . . . , n. (2.10)

In the following sections, we will analyze the model (2.10).

3. The equilibriums and invariants of (2.10)

In order to analyze the delayed model (2.10), we specify the notations used in the following sections.

Let C � C([−τ , 0], [0, 1]n) be the Banach space of continuous functions mapping the interval [−τ , 0] into [0, 1]n. By the fundamen-

tal theory of functional differential equations [41], it is easy to show that there exists a unique solution I(t) = (I1(t), I2(t), . . . , In(t))
satisfying initial condition I0(θ ) = φ(θ ) � C, where I0(θ) = (I1(θ), I2(θ), . . . , In(θ)) and φ(θ) = (φ1(θ), φ2(θ), . . . , φn(θ)), θ � [−τ ,

0].

In order to discuss clearly, we first make a note on notations. As usual, let It(θ ) = I(t + θ )(−τ � θ � 0) be a function

in C. In the following, It(θ ) and I0(θ ) represent functions in C, while Ik(t)(k = 1, 2, . . . , n) is the kth element of the vector

I(t) = (I1(t), I2(t), . . . , In(t)). Additionally for all u, v � Rn, we write u < v⇔uk � vk, u � v.

Next, we shall show that the results about the equilibriums and invariants of (2.10).
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For obtaining the equilibriums of the system (2.10), we set Ik(t) = I∗
k

and �(t) = �∗. Then the equilibriums of the system (2.10)

satisfy I∗
k

= βk�∗
1+βk�∗ , k = 1, 2, . . . , n, where �∗ =

∑
k kp(k)I∗

k〈k〉 . By substituting I∗
k

into �∗ =
∑

k kp(k)I∗
k〈k〉 , we have the self-consistency

equation

�∗ = 〈k〉−1
∑

k

kp(k)
βk�∗

1 + βk�∗ � G(�∗). (3.1)

The solution �∗ = 0 always satisfies the consistency equation. That means the system (2.10) has always disease-free equilibrium

E0 = (0, 0, . . . , 0). Upon further differentiation of G(�∗), we have

G′(�∗) = β

〈k〉
∑

k

k2p(k)

(1 + βk�∗)2
> 0,

G′′(�∗) = −2
β2

〈k〉
∑

k

k3p(k)

(1 + βk�∗)3
< 0.

So G(�∗) is rigorously increasing concave function. In view of G(0) = 0 and G(1) < 1, the self-consistency equation (3.1) allows a

nontrivial solution �∗ � 0(�∗ � (0, 1]) only if

dG

d�∗ |�∗=0 = β〈k2〉
〈k〉 > 1.

That means there exists a unique endemic equilibrium E∗ = (I∗1, I∗2, . . . , I∗n), where I∗
k

satisfies I∗
k

= βk�∗
1+βk�∗ . So the basic reproduction

number R0 is given by R0 = β〈k2〉
〈k〉 , where 〈k2〉 =

∑
k2p(k)
〈k〉 .

From above discussion, we have the following theorem:

Theorem 3.1. The system (2.10) has always disease-free equilibrium E0 = (0, 0, . . . , 0). If R0 > 1, there exists a unique endemic

equilibrium E∗ = (I∗1, I∗2, . . . , I∗n), where I∗
k

satisfies I∗
k

= βk�∗
1+βk�∗ .

Set C1 = {φ|φ � C, E0 < φ(θ ) < E∗, θ � [−τ , 0]} and C2 = {φ|φ � C, E∗ < φ(θ ) < (1, 1, . . . , 1), θ � [−τ , 0]}.

Theorem 3.2. C, C1 and C2 are invariants with respect to (2.10).

Proof. We prove only that C is invariant with respect to (2.10), C1 and C2 are invariants with respect to (2.10) can be proved by

the similar way.

By the definition of invariant, we will prove that if I(t) = (I1(t), I2(t), . . . , In(t)) is a solution of the system (2.10) with initial

condition I0(θ ) = φ(θ ) � C, then 0 � Ik(t) � 1 for all t > 0, k = 1, 2, . . . , n.

Suppose for the sake of contradiction that this is not true. Then by the continuity of I(t), there exists l � {1, 2, . . . , n} and ξ >

0, such that 0 � Ik(t) � 1 for 0 � t � ξ , k = 1, 2, . . . , n, and either

(i) Il(ξ ) = 0 and Il(t) < 0 on (ξ , ξ + ε) for some ε, or

(ii) Il(ξ ) = 1 and Il(t) > 1 on (ξ , ξ + ε) for some ε.

If (i) holds, assume, as we may, that ε < τ , from (2.10), we have
d(Il(t)e

t)
dt

= βetl[1 − Il(t)]�(I(t − τ)). It can be seen that Il(t)e
t

is non-decreasing on (ξ , ξ + ε), which is contrary to (i). If (ii) holds, from (2.10), we have
dIl(t)

dt
= β l[1 − Il(t)]�(I(t − τ))− Il(t) ≤

−Il(t) ≤ −1 for ξ < t < ξ + ε. It shows that Il(t) is non-increasing, which contradicts (ii). Thus 0 � Ik(t) � 1 for all t > 0,

k = 1, 2, . . . , n. �

4. Stability analysis of (2.10)

In this section, we first discuss the local stability of the disease free equilibrium E0 and endemic equilibrium E∗, after that, we

illustrate the global asymptotic stability of the equilibriums.

Theorem 4.1. For the model (2.10), one has

(i) If R0 < 1, the disease-free equilibrium E0 is locally asymptotically stable;

(ii) If R0 = 1, the disease-free equilibrium E0 is neutrally stable;

(iii) If R0 > 1, the disease-free equilibrium E0 is unstable.

Proof. The linearized system of (2.10) at the equilibrium E0 is

dIk(t)

dt
= βk

∑
k kp(k)Ik(t − τ)

〈k〉 − Ik(t), k = 1, 2, . . . , n.
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The associated characteristic equation is

F(λ) =

∣∣∣∣∣∣∣∣∣∣∣

λ + 1 − β
〈k〉 p(1)e−λτ − β

〈k〉 2p(2)e−λτ · · · − β
〈k〉 np(n)e−λτ

− 2β
〈k〉 p(1)e−λτ λ + 1 − 2β

〈k〉 2p(2)e−λτ · · · − 2β
〈k〉 np(n)e−λτ

· · ·
nβ
〈k〉 p(1)e−λτ − nβ

〈k〉 2p(2)e−λτ · · · λ + 1 − nβ
〈k〉 np(n)e−λτ

∣∣∣∣∣∣∣∣∣∣∣
= (λ + 1)n−1(λ + 1 − R0e−λτ ). (4.1)

It is easy to see that the characteristic equation (4.1) has n−1 eigenvalues which are all −1 and the remain eigenvalues satisfy

the equation

λ + 1 − R0e−λτ = 0. (4.2)

So the stability of the disease-free equilibrium is decided by the roots of Eq. (4.2). Assume λ = x + iy satisfies Eq. (4.2). Then we

have x + 1 + iy − R0e−λτ eiy = 0, i.e. x + 1 + iy = R0e−λτ eiy. So (x + 1)2 + y2 = R2
0e−2λτ .

(i) If R0 < 1, we are only required to verify that the all roots of (4.2) have negative real part.

For the sake of contradiction, suppose x � 0, then 1 ≤ (x + 1)2 + y2 ≤ R2
0 < 1. That is contrary, so x < 0. Therefore E0 is locally

asymptotically stable.

(ii) If R0 = 1, we are only required to prove x � 0.

When y � 0, suppose x � 0, then 1 < (x + 1)2 + y2 < R2
0 < 1. That is contrary, so x < 0.

When y = 0, suppose x > 0, then 1 < (x + 1)2 + y2 < R2
0 = 1. That is contrary, so x � 0. if x = 0, then (4.2) holds. This means

that λ = 0 is a root of (4.2). Since F′ ′(0) � 0, λ = 0 is only a simple root of (4.2). Thus E0 is linear neutral stable.

(iii) If R0 > 1, then F(0) < 0 and F(∞) > 0. Therefore F(λ) has at least one positive root. It indicates that E0 is unstable. �

Theorem 4.2. If R0 > 1, the endemic equilibrium E∗ is locally asymptotically stable.

Proof. We take transform u(t) = (u1(t), u2(t), . . . , un(t)) = I(t)− E∗, i.e. uk(t) = Ik(t)− I∗
k
, k = 1, 2, . . . , n, then

duk(t)

dt
= βk(1 − I∗k)�(u(t − τ))− (1 + βk�∗)uk − βkuk�(u(t − τ)), k = 1, 2, . . . , n. (4.3)

The linearized system of (2.10) at equilibrium E∗ is

duk(t)

dt
= βk(1 − I∗k)�(u(t − τ))− (1 + βk�∗)uk, k = 1, 2, . . . , n.

Denote aij = β
〈k〉 (1 − I∗

i
)jp(j)e−λτ , aii = −1 − iβ�∗ + β

〈k〉 (1 − I∗
i
)ip(i)e−λτ , i, j = 1, 2, . . . , n, i 
= j.Then the associated characteristic

equation is

F(λ) =

∣∣∣∣∣∣∣∣
λ − a11 −a12 · · · −a1n

−a21 λ − a22 · · · −a2n

· · ·
−an1 −an2 · · · λ − ann

∣∣∣∣∣∣∣∣
=

n∏
k=1

(λ + 1 + kβ�∗)− β

n

n∑
k=1

k2p(k)(1 − I∗k)
n∏

l
=k,l=1

(λ + 1 + lβ�∗)e−λτ . (4.4)

Let

P(λ) =
n∏

k=1

(λ + 1 + kβ�∗),

Q(λ) = β

n

n∑
k=1

k2p(k)(1 − I∗k)
n∏

l
=k,l=1

(λ + 1 + lβ�∗).

Then Eq. (4.4) can be written as

F(λ) = P(λ)− Q(λ)e−λτ . (4.5)

Because Q(−1 − lβ�∗)Q(−1 − (l + 1)β�∗) < 0, l = 1, 2, . . . , n − 1, Q(λ) has at least one root in (−1 − (l + 1)β�∗,−1 − lβ�∗), l =
1, 2, . . . , n − 1. Additionally Q(λ) is n − 1 order polynomial. So there exists only one root of Q(λ) in (−1 − (l + 1)β�∗, −1 −
lβ�∗), l = 1, 2, . . . , n − 1. Denote it by −αl, αl ∈ (1 + lβ�∗, 1 + (l + 1)β�∗), l = 1, 2, . . . , n − 1. So Q(λ) = β

〈k〉
∑n

k=1 k2p(k)(1 −
I∗
k
)
∏n−1

l=1
(λ + αl). Notice that β

〈k〉
∑n

k=1 k2p(k)(1 − I∗
k
) = 1, then Q(λ) = ∏n−1

l=1
(λ + αl).

Next, we will prove at first P(λ), Q(λ) satisfy the conditions as follows:

(I) P(λ) and Q(λ) are analytic in the set �λ � 0 and P(λ) � 0, �λ > 0,
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(II) P(−iy) = P(iy), Q(−iy) = Q(iy), 0 ≤ y < +∞,

(III) |Q(iy)| < |P(iy)|, 0 � y < +∞,

(IV) lim|λ|→∞,�λ>0

∣∣∣ Q(λ)
P(λ)

∣∣∣ = 0.

Following, we will prove that there is no root of (4.5) in the set �λ � 0, i.e. all roots of (4.5) are in �λ < 0 for the given τ > 0.

It is obvious that the conditions (I) and (II) hold. Since

|P(iy)| =
n∏

k=1

√
(1 + kβ�∗)2 + y2,

|Q(iy)| =
n−1∏
l=1

√
α2

l
+ y2, 1 + lβ�∗ < αl < 1 + (l + 1)β�∗, l = 1, 2, . . . , n − 1,

we have∣∣∣∣ P(iy)

Q(iy)

∣∣∣∣ =
√

(1 + β�∗)2 + y2
√

(1 + 2β�∗)2 + y2 . . .
√

(1 + nβ�∗)2 + y2√
α2

1 + y2 . . .

√
α2

n−1 + y2

>

√
(1 + β�∗)2 + y2>1.

This indicates that the condition (III) holds. Set λ = x + iy, then

lim
|λ|→∞,�λ>0

∣∣∣∣Q(iy)

P(iy)

∣∣∣∣
= lim

|λ|→∞,�λ>0

√
(α1 + x)2 + y2 . . .

√
(αn−1 + x)2 + y2√

(1 + β�∗ + x)2 + y2
√

(1 + 2β�∗ + x)2 + y2 . . .
√

(1 + nβ�∗ + x)2 + y2

< lim
|λ|→∞,�λ>0

1√
(1 + β�∗ + x)2 + y2

= 0.

So lim|λ|→∞,�λ>0

∣∣∣ Q(iy)
P(iy)

∣∣∣ = 0. The condition (IV) holds.

Now, we prove that there is no root of (4.5) in the set �λ � 0 by the way similar to [42].

Because P(λ) and Q(λ) are analytic in the set �λ � 0 and P(λ) � 0, for �λ � 0. The function P(λ)/Q(λ) is analytic in �λ � 0. On

a sufficiently large semi-circle |λ| = K in �λ � 0, |Q(λ)/P(λ)| � ρ < 1 because of (IV) and |Q(λ)/P(λ)| � ρ < 1 on the line λ = iy, −
K � y � K because of (III). So by the maximum modulus principle, in every large semi-circle in the right half-plane, |Q(λ)/P(λ)| <

1. But in the right half-plane, |eλτ | > 1. So − Q(λ)/P(λ) = eλτ cannot have root in the right half-plane. Namely, there is no root of

(4.5) in the set �λ � 0. Thus, the endemic equilibrium E∗ is locally asymptotically stable.

Following, we will discuss the global asymptotical stability of the disease-free equilibrium E0 and the endemic equilibrium

E∗. �

Theorem 4.3. For the model (2.10), one has

(i) If R0 � 1, the disease-free equilibrium E0 is globally asymptotically stable;

(ii) If R0 > 1, the endemic equilibrium E∗ is globally asymptotically stable.

Proof. (i) Since E0 is stable when R0 � 1, we need only to prove E0 is globally attractive.

Let φ(θ) = (φ1(θ), φ2(θ), . . . , φn(θ)) ∈ C, we construct a functional

V(φ) = 1

2

[∑
k

kp(k)φk(0)

]2

+ 1

2

∫ 0

−τ

[∑
k

kp(k)φk(θ)

]2

dθ .

Set �(θ ) = 	kkp(k)φk(θ ), then

V ′
(2.10)(φ) = lim

t→0+

1

t
(V(It)− V(φ))

= �(0)�′(0)+
∫ 0

−τ
�(θ)�′(θ)dθ

= �(0)

[∑
k βk2p(k)

〈k〉 �(−τ)− �(0)

]
+ 1

2
�2(0)− 1

2
�2(−τ)

≤ �(0)�(−τ)− 1
�2(0)− 1

�2(−τ) ≤ 0

2 2
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So V(φ) is a Lyapunov functional on C. Further, let E = {φ ∈ C|V ′(φ) = 0}. From above, E = {φ ∈ C|�(0) = �(−τ) = 0}. Let M

denotes the largest subset of E that is invariant with respect to the system (2.10). Then M consists of E0 only. By Lyapunov–

LaSalle invariance principle 3.1 (see Chapter 5 in [41]), the disease-free equilibrium E0 is globally attractive. So E0 is globally

asymptotically stable.

(ii) We need only to prove E∗ is global attractive. It can be completed by two steps. Firstly we prove C1 and C2 are attractive

domains respectively. Secondly, we prove C\(C1
C2) is attractive domain.

Step 1: Let ψ(θ) = (ψ1(θ),ψ2(θ), . . . ,ψn(θ)) be such that It(θ ) = ψ(θ ) + E∗ � C1, then ψk(θ) ≤ 0, k = 1, 2, . . . , n, θ ∈ [−τ , 0].

We construct a functional

V(ψ) = 1

2

[∑
k

kp(k)ψk(0)

]2

+ 1

2

∫ 0

−τ

[∑
k

kp(k)ψk(θ)

]2

dθ .

Set U(θ ) = 	kkp(k)ψk(θ ), then U(θ ) � 0, θ � [−τ , 0]. So

V ′
(4.3)(ψ) = U(0)

[∑
k βk2p(k)(1 − I∗

k
)

〈k〉 U(−τ)− U(0)−
∑

k

βk2p(k)ψk(0)�(I(t))

]
+ 1

2
U2(0)− 1

2
U2(−τ)

= U(0)U(−τ)− 1

2
U2(0)− 1

2
U2(−τ)− U(0)

∑
k

βk2p(k)ψk(0)�(I(t)).

Since U(0)	kβk2p(k)ψk(0) � 0 and �(I(t)) � 0. So V′(ψ) � 0. Further, V′(ψ) = 0 only if U(0) = U( − τ ) = 0. It correspondsψk(θ) =
0, k = 1, 2, . . . , n, θ ∈ [−τ , 0]. By Lyapunov–LaSalle invariance principle 3.1 (see Chapter 5 in [41]), (u1(t), u2(t), . . . , un(t)) →
(0, 0, . . . , 0). So �φ � C1, I(t, φ) → E∗.

By the same way, we can obtain that for �φ � C2, I(t, φ) → E∗.

Step 2: We define

F(t, φ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β[1 − φ1(0)]�(φ(−τ))− φ1(0)

2β[1 − φ2(0)]�(φ(−τ))− φ2(0)

. . .

kβ[1 − φk(0)]�(φ(−τ))− φk(0)

. . .

nβ[1 − φn(0)]�(φ(−τ))− φn(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for any φ � C. Thus, the system (2.10) can be reformulated as:

dI(t)

dt
= F(t, It). (4.6)

Define the solution semi-flow �(t)φ = It(φ) = I(t, φ), φ � C, t � 0. Since f is cooperative in C, by Theorems 4.1 and 4.5 (see Hirsh

and Smith [43]), semiflow �(t) defined by (4.5) is monotone. Thus, for all φ � C\(C1
C2), there exist φ′ � C1, φ′ ′ � C2 such that

φ′(θ ) < φ(θ ) < φ′ ′(θ ), θ � [−τ , 0]. By the monotony of �(t), we have �(t)φ′ < �(t)φ < �(t)φ′ ′, i.e. I(t, φ′) < I(t, φ) < I(t, φ′ ′).
From the results obtained in step 1, it follows that I(t, φ) → E∗.

So the endemic equilibrium E∗ is globally attractive. Furthermore, it is globally asymptotically stable. �

5. Simulations

In this section, we use model (2.9) to simulate the evolution behavior of the vector-borne diseases to support the results

obtained in the previous sections. Meanwhile, we display the effect of topology structure of networks and the time delay τ on

vector-borne diseases spread.

In [14], Ruan et al. have given a summary about the range of parameters in malaria transmission. So in our simulations, we

choose some parameter values by the summary sheet in [14]. The recovery rate γ of an infective human varies from 0.01 to 0.05

per day, we take γ = 0.01. The biting rate on humans by a single mosquito is about 0.2 to 0.5 per day, here we take a = 0.2.

The probability of infected bites on both human and mosquito that produces an infection is b = c = 0.5. And the death rate of

mosquitoes δ varies from 0.05 to 0.5 per day, we choose δ = 0.5 per day. We assume the size of human population is 1000, the

size of vector population in each subregion is 1000, and the number of subregions n = 100. To study the effect the time delay τ
on vector-borne diseases spread, we have chosen different values of the time delay τ which varies from 5 to 15 days [14]. The

degree distribution for human population is assumed as p(k) � k−μ, where μ = 2.4. Let i(t) = ∑
k p(k)Ik(t) be the total density of

infective humans.

As predicted by the analytic calculation, Fig. 2 shows that if R0 < 1, the disease will disappear eventually. From Fig. 2(a),

we can see, for different delay lengths, the relative density I40(t) reaches the same asymptotic value, 0. But the steady state is

reached at different times. When the lengths of the delay are 13, 13.5 and 14 respectively, I40(t) takes 625, 230 and 140 time

steps respectively to reach its steady state. Similar phenomenon can be found in Fig. 2(b). It indicates that when R0 < 1, the time

delay speeds up the disappearing process of disease.
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Fig. 2. The time evolutions under the condition of R0 < 1 and Ik(t) = 0.001, t ∈ [−τ , 0], k = 1, 2, . . . , n. (a) The time evolutions of the relative density I40 for

different lengths of the delay τ ; (b) The time evolutions of the total density i for different lengths of the delay τ .
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Fig. 3. The time evolutions under the condition of R0 > 1 and Ik(t) = 0.001, t ∈ [−τ , 0], k = 1, 2, . . . , n. (a) The time evolutions of the relative density I40 for

different lengths of the delay τ ; (b) The time evolutions of the total density i for different lengths of the delay τ .
When R0 > 1, for different delay lengths, the time evolution of the relative density I40 and the total density i are displayed in

Fig. 3. From the figure, it is clear that both of the relative density I40(t) and the total density i(t) reach different asymptotic values

for different lengths of the delay, and the asymptotic values of I40(t) and i(t) decrease with increasing τ . Another phenomenon

we can see, when we take 3 different values of the time delay, 10, 11 and 12, the relative density I40(t) takes 100, 200 and 420

time steps to reach its steady state, while for the total density i(t), the time needed is 110, 180 and 370 respectively. That means

the time it takes for the relative density I40(t) and the total density i(t) to reach their steady states increases with increasing τ .

From these phenomena, we can draw a conclusion: in the case of R0 > 1, the larger the delay length τ is, the more slowly and

less widely the disease spreads.

From Figs. 2 and 3, we know that the time delay plays important role in the propagation process and the larger the delay τ ,

the more the benefit to humans.

Fig. 4 shows the time evolutions of the relative densities I20, I30 and I40 to demonstrate the heterogeneity induced by the

presence of humans with different connectivity. Fig. 4(a) displays the case of R0 < 1. From it, we can see that the relative densities

I20(t), I30(t) and I40(t) with the same initial data take 655, 650 and 625 time steps respectively to reach the same steady state. As

shown in Fig. 4(b), when R0 > 1, I20(t), I30(t) and I40(t) take 110, 105 and 100 time steps respectively to reach their steady state.

Particularly, the asymptotic values have the relation I∗40 > I∗30 > I∗20. That is, in the steady state, the relative density I∗
k

increases

with the increasing connect degree k of humans. These phenomena can be explained easily by the fact: the larger the human’s

connect degree, the higher the probability to be infected.

6. Discussion

Various researches have shown that there are heterogeneities in host–vector contact (see the study [44]) for vector-borne

diseases. As noted in [31], bipartite networks can provide the natural framework to investigate the spread of vector-borne

diseases. However capturing the degree of each mosquito and each human is difficult.

In this paper, firstly, we provide a way to model the spread of vector-borne diseases on bipartite networks. In view of the habit

of vectors limited dispersal from their breeding sites, the whole region where vector-borne disease occurs is divided into several

subregions. Then we construct bipartite networks where there are two classes nodes, humans and subregions. An edge placed

between a subregion and a human represents human enters the subregion and is fully mixed with the vectors in the subregion.
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Fig. 4. (a) The time evolutions of the relative densities I20, I30 and I40 with the initial condition Ik(t) = 0.001, t ∈ [−13, 0], k = 1, 2, . . . , n, when R0 = 0.8801 and

τ = 13; (b) The time evolutions of the relative densities I20, I30 and I40 with the initial condition Ik(t) = 0.001, t ∈ [−10, 0], k = 1, 2, . . . , n, when R0 = 3.9446 and

τ = 10.
Thus heterogeneity of human behaviors can interpret the heterogeneity in human–vector contact. Moreover it can estimate the

degree distribution of vectors.

Secondly, we derive a SIS model with a time delay on bipartite networks and analyze it to uncover the effect of the structure of

networks and the time delay on vector-borne diseases spread. We have given the basic reproduction number R0 that determines

the epidemic spread and proved that if R0 � 1, disease-free equilibrium E0 is globally asymptotically stable; while R0 > 1, the

endemic equilibrium E∗ is globally asymptotically stable. This result shows that the time delay doesn’t destabilize the system. It

is also confirmed by simulations.

From the expression for the basic reproduction number

R0 = β〈k2〉
〈k〉 = a2bcnV

eδτ γ δN〈k〉 × 〈k2〉
〈k〉 ,

where N〈k〉
n =

∑
k k2q(k)∑
k kq(k)

and 〈k2〉
〈k〉 =

∑
k k2p(k)∑
k kp(k)

, we can obtain that the basic reproduction number depends on the structure of

bipartite networks. The study [30] also demonstrated it. Furthermore, the basic reproduction number depends on the time delay

and it decreases with the increasing delay length. By simulations, it is confirmed that when the disease will become endemic,

the time delay can slow down the spreading of vector-borne diseases and the density of infective humans in the steady state

decreases with the increasing delay length. The results suggest that the structure of the bipartite networks and the time delay

play important roles in the propagation process.

There are some constraints on vector numbers in each subregion and the degree of each subregion in the present study. Even

though our results will be greatly beneficial for us to understand the spreading behaviors and design effective epidemic-control

strategies. In the near future, we will take into account various size of vector population in subregions and more realistic degree

distribution of subregions to further study the vector-borne diseases spread on bipartite networks.
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